


# **The EMC Solution**













| Company Overview    | 4 |
|---------------------|---|
| Enerdoor Compliance | 5 |
| Enerdoor Service    | 6 |
| Product Overview    | 8 |

### **SINGLE PHASE FILTERS**

| FIN21  | 14 |
|--------|----|
| FIN26  | 16 |
| FIN27  | 18 |
| FIN27G | 20 |
| FIN33  | 22 |
| FIN35  | 24 |
| FIN40  | 26 |
| FIN50  | 28 |
| FIN57  | 30 |
| FIN60  | 32 |
| FIN70  | 34 |
| FIN80  | 36 |

# THREE PHASE PARALLEL FILTERS

| FIN130SP | 40 |
|----------|----|
| FIN230SP | 40 |
| FIN735   | 40 |
| FIN730   | 42 |
| FIN740   | 44 |

. .

## **THREE PHASE FILTERS**

| THREE FHASE HELERS |    |
|--------------------|----|
| FIN1351            | 48 |
| FIN538             | 50 |
| FIN538S            | 52 |
| FIN538S1           | 54 |
| FIN539S            | 58 |
| FIN1200            | 60 |
| FIN1200HV          | 60 |
| FIN1500            | 64 |
| FIN1500HV          | 64 |
| FIN1600            | 68 |
| FIN1700            | 70 |
| FIN1700G           | 72 |
| FIN1700E           | 74 |
| FIN1700EG          | 76 |
| FIN1700IT          | 78 |
| FIN1900            | 80 |
| FIN1900G           | 82 |
| FIN1900E           | 84 |
| FIN1900EG          | 86 |
| FIN1900S           | 88 |
| FIN3755            | 90 |
| FIN7213            | 92 |
|                    |    |

#### **THREE PHASE + NEUTRAL FILTERS**

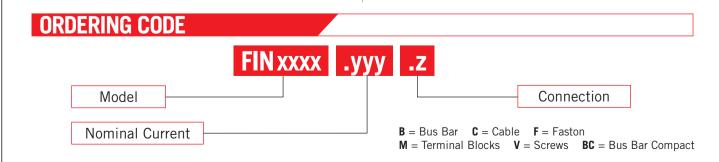
| FIN15      | 98  |
|------------|-----|
| FIN1240    | 100 |
| FIN1740    | 104 |
| FIN1740ESM | 106 |
| FIN1940    | 108 |
| FIN1940E   | 110 |

# **DC FILTERS**

| FIN1220    | 114 |
|------------|-----|
| FIN1220.0V | 118 |
| FIN1520    | 122 |
| FIN1520.0V | 126 |
| FIN7212    | 130 |

# **HARMONIC FILTERS**

| FINFF 230Vac | 138 |
|--------------|-----|
| FINFF 400Vac | 140 |
| FINFF 480Vac | 142 |
| FINHRM       | 144 |
| FINHRM5      | 146 |
| FINHRMAD     | 151 |
| FINSVG       | 153 |


# **MOTOR PROTECTION**

| FIN900    | 160 |
|-----------|-----|
| FIN930    | 164 |
| FIN950U   | 166 |
| FIN5955   | 168 |
| FIN958    | 170 |
| FIN5980P  | 172 |
| FIN5983   | 174 |
| FIN960F   | 176 |
| FIN905SF  | 178 |
| FIN915SFH | 182 |
| FIN47SNB  | 186 |
| FINSTP    | 188 |
| FINTR     | 190 |
| FINFE     | 190 |

## ACCESSORIES

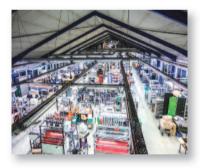
| FINPRT               | 192 |
|----------------------|-----|
| FINENCL              | 193 |
|                      |     |
| Application Criteria | 194 |

| 101 |
|-----|
| 199 |
| 202 |
|     |





. . .






Finmotor founded 1992 Rozzano, Italy



Enerdoor/Finmotor headquarters Milan, Italy



Enerdoor/Eichhoff production facility Vac, Hungary

The Enerdoor Group consists of Enerdoor in the United States, Germany and Switzerland; Finmotor and Finlab in Italy; and Eichhoff Elektro in Hungary.

Since 1992, The Enerdoor Group has been an international leader in the development and production of power quality and electromagnetic solutions for automated machinery and industrial plants. Enerdoor's broad range of products include: EMI/RFI filters, motor protection, harmonic filters, line reactors, surge arresters, voltage stabilizers, and customized solutions.

Advancements in power semiconductor technology in the 1970's eventually led to the development of the earliest variable frequency drives (VFDs) in Europe. VFDs are inherently "noisy", due to their high frequency switching characteristics. In response to market feedback, Enerdoor physicists and engineers created a broad range of filter solutions to resolve challenges caused by VFDs. Enerdoor filters turned out to be the perfect solution to meet the needs of the growing industrial equipment market.

With the increase of high frequency products used in the Industrial equipment market, it became clear that regulations would need to be established. CE compliance became a requirement in 1993. Due to Enerdoor's vision, the company was well positioned to become and continues to be one of the top suppliers in this growing market.

Enerdoor began operations in Portland, Maine in 2007. Organic growth lead to Enerdoor expanding operations into Switzerland in 2007 and Germany in 2010. With the 2011 acquisition of the Hungarian transformer manufacturer, Eichhoff Elektro, Enerdoor has grown to be a global supplier, with manufacturing and R&D in four countries and a worldwide network of distributor and manufacturer representatives.

Enerdoor remains committed to providing the highest quality solutions and outstanding service to both customers and sales channel partners. Our ability to understand noise and diagnose the root causes of electrical noise, allows Enerdoor to recommend optimum solutions for the most challenging applications.

# ENERDOOR COMPLIANCE

CE

Enerdoor is committed to ensuring the production and delivery of high quality products. We strive to provide our customers with products and services that exceed expectations, while guaranteeing the best quality at all times.

**VERDOOR** 

Enerdoor products are CE approved with select series featuring UL approval for the US and Canadian markets. Enerdoor transformers and ignition systems are VDE approved.



Eichhoff Elektro, a subsidiary of the Enerdoor Group, is an ISO-9001 Certified company. This Certification allows Enerdoor to maintain an excellent standard for internal quality and production control.

Engineered by





# Enerdoor Offers On-Site CE Compliance and Safety Testing

An international leader in the development and production of EMI-RFI filters and power quality solutions for automated and industrial machines, Enerdoor additionally offers on-site CE compliance and safety testing.

Since 1992, Enerdoor has specialized in the measurement and analyses of EMC testing and CE Certification, providing on-site service to customers around the world through an efficient, global organization. Our flat rate testing service is unique in the industry, as is our pledge to not leave the facility until equipment is compliant.

Enerdoor service offers two fully equipped EMC mobile laboratories in Europe and two in North America. In addition, Enerdoor has an anechoic chamber located in Italy for small/medium equipment.

# **On-Site Compliance Testing**

The CE mark is an international reference for industrial and residential electronic applications. Enerdoor's on-site CE Certification testing specializes in the measurement and analysis of electromagnetic compatibility of systems in accordance with the EMC, FCC Part 15 and Safety Directives. The CE Directive dictates that all electric and electronic components in machinery and manufacturing plants must meet the minimum requirements indicated by the Directive.

Enerdoor engineers are able to assist customers through a portion or the entirety of the CE Certification process and provide filtering solutions to meet the conducted, radiated, and immunity test requirements. We work on-site with the customer to find real time solutions, and offer recommendations and suggestions to minimize potential radio-frequency interference that may cause malfunctions inside the machine or to other devices all for one flat-rate.

# **Testing, Support and Training Service**

Enerdoor is committed to ongoing investments, new technology solutions and excelling in the understanding of real-world power issues.

- Features an anechoic chamber and R&D facility
- CE Certification including machinery, safety and low voltage Directives
- EMC mitigation for CE and FCC compliance
- Power quality testing
- Low and high frequency disturbance problem solving
- Technical CE reports and final certificates
- Technical training for the Directive
- Product safety consulting
- Risk assessment
- ATEX consulting
- Seminars and technical training
- Ability to prepare necessary documentation for Technical Construction File (TCF)







# **Mobile Laboratories**

Enerdoor mobile laboratories are available for EMC measurements directly at manufacturing plants or at the end users facility.

SERVICE

- Comply equipment with the EMC Directive
- Consultation and support for EMC problem solving
- Provide final test reports for completed tests
- Radio frequency disturbance analysis for single machines or entire plants
- Problem solving for disturbances generated by machines used in the manufacturer's plant
- Harmonic distortion analysis and solutions
- Disturbance analysis and solutions for the manufacturing plant/end user



# **Power Quality Analysis**

Enerdoor can assist customers performing power quality analysis on single machines or the complete plant. With several power quality analyzers, Enerdoor engineers can simultaneously monitor different drops in the same location.

A full report and recommendation of the best possible solution to eliminate the problem are offered at the end of the measurement period.

# **Motor Analysis**

Enerdoor offers motor analysis to customers experiencing premature failure on windings and bearings due to potential dV/dt issues. Enerdoor engineers determine the level of dV/dt using a differential voltage probe up to 5000V and a current probe on the motor. This service is available in all of Europe and North America.





# PRODUCT OVERVIEW

This catalog features Enerdoor EMI/RFI filters, harmonic solutions and motor protection. Enerdoor also specializes in surge arresters, voltage stabilizers, and transformers as well as CE Certification and consulting services.



Surge Arresters Class I, I+II, II, II+III Nominal voltage up to 690 Vac (1200 Vdc) Surge capability up to 300 kA Visual and remote contact indicator DIN rail mounting



# **Voltage Stabilizers**

Single-phase stabilizer: Nominal voltage up to 277 Vac Rated power up to 320 kVA Three-phase stabilizer: Nominal voltage up to 600 Vac Rated power up to 4000 kVA



## **Transformers and Ignition Systems**

Safety encapsulated transformer 0.35 to 100 VA Primary voltage 0-600 Vac Secondary voltage 1-48V Electronic ignition system High frequency ignition system



## **CE Certification and Consulting**

Mobile EMC testing Machinery Directive and safety consulting Problem solving in manufacturing plant Power quality analysis Motor analysis



#### **CE Certification and Consulting: Finlab - European Division** Mobile EMC testing Anechoic chamber and EMC laboratory Machinery Directive and safety consulting Problem solving in manufacturing plants Power quality analysis Motor analysis





Enerdoor is an international leader in the design and manufacturing of standard and custom EMI/RFI filters.

## Introduction

Electromagnetic interference (EMI), or radio frequency interference (RFI), is a type of electric or electronic emission that can degrade, impair or prevent electrical circuit performance.

EMI filters are used to suppress interference generated by the device, or by other equipment, and to protect a device from electromagnetic interference signals present in the environment. Most EMI filters consist of components that suppress differential and common mode interference.

To protect and optimize equipment, Enerdoor EMI-RFI filters provide solutions in three product categories: single-phase, three-phase, and three-phase plus neutral filters.

# **EMC Directive**

Electromagnetic Compatibility (EMC) refers to the ability of equipment or systems to operate in an electromagnetic environment without introducing intolerable electromagnetic interference to anything in the environment. EMC includes two important aspects: emission and immunity.

**Emission:** The phenomenon by which the electromagnetic energy is emitted from a source such as a device, machine or system and shall not emit undesirable electromagnetic interference of a higher level than those allowed by the European EMC Directive 2014/30/EU (See Figure 1).

*Immunity* (To Interference): The capability of a machine, equipment or system to correctly operate without degrading functional characteristics when affected by electromagnetic interference.

Many countries have established regulations to minimize the radio-frequency interference between electronic equipment including: the CE mark in Europe, FCC in the United States, CCC in China, VCCI in Japan, RCM in Australia & New Zealand, and KCC in South Korea.

The global guideline for electromagnetic interference is the European Directive 2014/30/EU which requires that manufacturers of industrial machine tools and electric and electronic equipment comply with the electromagnetic compatibility emission and immunity Standards.

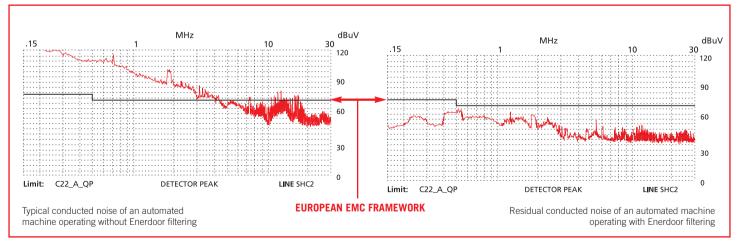



Figure 1:

Example of typical high frequency disturbance generated by an automated machine operating without and with filtering necessary to comply with the European EMC Directive Framework 2014/30/EU limits.





# **General Classification of Interference**

### 1) Conducted and radiated interference

- a) Conducted interference is caused by the physical contact of undesirable voltage or current signals that enter or exit from a specific device through its own signaling or energizing electric conductors.
- b) Radiated interference is caused without physical contact of conductors. Every electric circuit acts as an aerial and when dipped in an electromagnetic field may induce voltage interference. Every variable current flowing in an electric conductor creates an electromagnetic field in its surrounding environment and similarly each electromagnetic field induces an electric signal in a close conductor.

#### 2) Common mode and differential mode interference

Common mode interference is an undesirable signal measured between all conductors of an electric circuit connected together and a common reference, usually the earth (See Figure A).

Differential mode interference is an undesirable signal measured between two independent conductors of the same electrical circuit (See Figure B).

# Problems generated by EMI-RFI interference

- PLCs, sensors, encoders and PCs failing
- Decreased life of sensitive components
- Production downtime
- Disturbance in other buildings/machines

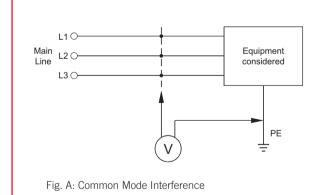



Figure 2: Diagram outlining difference between common mode and differential mode interference

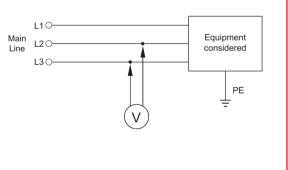



Fig. B: Differential Mode Interference





# **Interference Classification**

# a) Conducted interference due to low frequency phenomena

- Mains 50/60 Hz harmonics and sub-harmonics
- Signaling systems
- Voltage variations, interruptions and dips
- Voltage unbalances
- Mains 50/60 Hz frequency variations
- Low frequency induced voltage
- DC components in AC

### b) Conducted interference due to high frequency phenomena

- Induced voltage or current (continuous or modulated waves)
- Voltage transients (bursts)
- Oscillatory transients (single or repetitive)

### c) Radiated interference due to low frequency phenomena

- Magnetic fields (transients or continuous)
- Electric fields

## d) Radiated interference due to high frequency phenomena

- Magnetic fields
- Electric fields
- Electromagnetic fields (transients, continuous or modulated wave)

# **High Frequency Solution**

To protect and optimize equipment performance, Enerdoor offers one of the largest ranges of solutions to reduce electromagnetic / radio-frequency interference. Offering a large variance of electrical and mechanical characteristics, Enerdoor EMI/RFI filters cover standard nominal voltage from 0 to 750 Vac with the following nominal currents:

Single-phase EMI/RFI filters: from 1 to 75A

Three-phase EMI/RFI filters: from 3 to 75A

Three-phase plus neutral EMI/RFI filters: from 3 to 3000A

**Parallel** EMI/RFI filters: In addition to the above EMI/RFI filter lines, Enerdoor offers a unique parallel filter solution. This line is designed for the specific frequency range of 50 kHz – 10 MHz where there is severe risk of interference and disturbance.



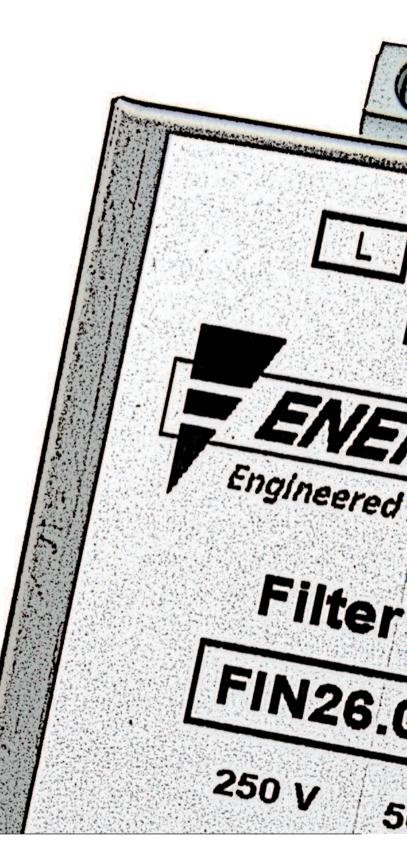


|                              |             |                   |         |        | CONNECTORS      |        |         |        |                        |                       | FEAT           | URES                    |                           |                | A                                 | PPLIC        | ATION      | IS                            |         |                |
|------------------------------|-------------|-------------------|---------|--------|-----------------|--------|---------|--------|------------------------|-----------------------|----------------|-------------------------|---------------------------|----------------|-----------------------------------|--------------|------------|-------------------------------|---------|----------------|
| Filter<br>Selection<br>Guide | Description | Current Range (A) | Voltage | uc     | Terminal Blocks | MS     | Bar     | es     | IEC Connector / Faston | Excellent Attenuation | DIN Rail Mount | Long Cable Applications | Low Frequency Attenuation | Compact Design | Suitable for Medical Applications | Power Supply | Automation | Renewable Energy / LED Lights | ical    | Approval       |
| Single Phase                 | Des         | Cur               | Volt    | Faston | Term            | Screws | Bus Bar | Cables | IEC                    | Exce                  | DIN            | Long                    | Low                       | Com            | Suitat                            | Powe         | Auto       | Rene                          | Medical | Appr           |
| FIN21                        | 1-phase     | 3-20              | 0-250   |        | ×               |        |         |        |                        |                       | ×              |                         |                           |                | ×                                 | x            |            |                               | ×       | c <b>RL</b> us |
| FIN26                        | 1-phase     | 3-20              | 0-250   |        | ×               |        |         |        |                        |                       | ×              | ×                       |                           |                | ×                                 | ×            |            |                               | ×       | c <b>RL</b> us |
| FIN27                        | 1-phase     | 3-20              | 0-250   |        | ×               |        |         |        |                        | x                     | ×              | ×                       |                           |                |                                   |              | ×          | x                             | x       | c <b>W</b> us  |
| FIN27G                       | 1-phase     | 3-20              | 0-250   |        | ×               |        |         |        |                        | ×                     | ×              | ×                       | ×                         |                | ×                                 |              | ×          | ×                             | ×       | c <b>FL</b> us |
| FIN33                        | 1-phase     | 3-75              | 0-250   | ×      |                 | ×      |         |        |                        |                       |                |                         |                           | ×              | ×                                 | ×            |            |                               |         |                |
| FIN35                        | 1-phase     | 5-24              | 0-250   | ×      | ×               |        |         | ×      |                        |                       |                |                         |                           |                | ×                                 |              | ×          |                               |         |                |
| FIN40                        | 1-phase     | 5-24              | 0-250   | ×      | ×               |        |         | ×      |                        |                       |                |                         |                           |                | ×                                 |              | ×          |                               |         |                |
| FIN50                        | 1-phase     | 5-24              | 0-250   | ×      | ×               |        |         |        |                        | ×                     |                | ×                       |                           |                |                                   |              | ×          | ×                             |         |                |
| FIN57                        | 1-phase     | 6-25              | 0-250   | ×      |                 | ×      |         |        |                        | ×                     |                | ×                       | ×                         | ×              |                                   |              | ×          | x                             | ×       |                |
| FIN60                        | 1-phase     | 1-6               | 0-250   |        |                 |        |         |        | ×                      |                       |                |                         |                           |                | ×                                 | ×            |            |                               |         |                |
| FIN70                        | 1-phase     | 1-6               | 0-250   |        |                 |        |         |        | ×                      |                       |                |                         |                           |                | ×                                 | ×            |            |                               |         |                |
| FIN80                        | 1-phase     | 1-10              | 0-250   |        |                 |        |         |        | ×                      |                       |                |                         |                           |                | x                                 | x            |            |                               |         |                |



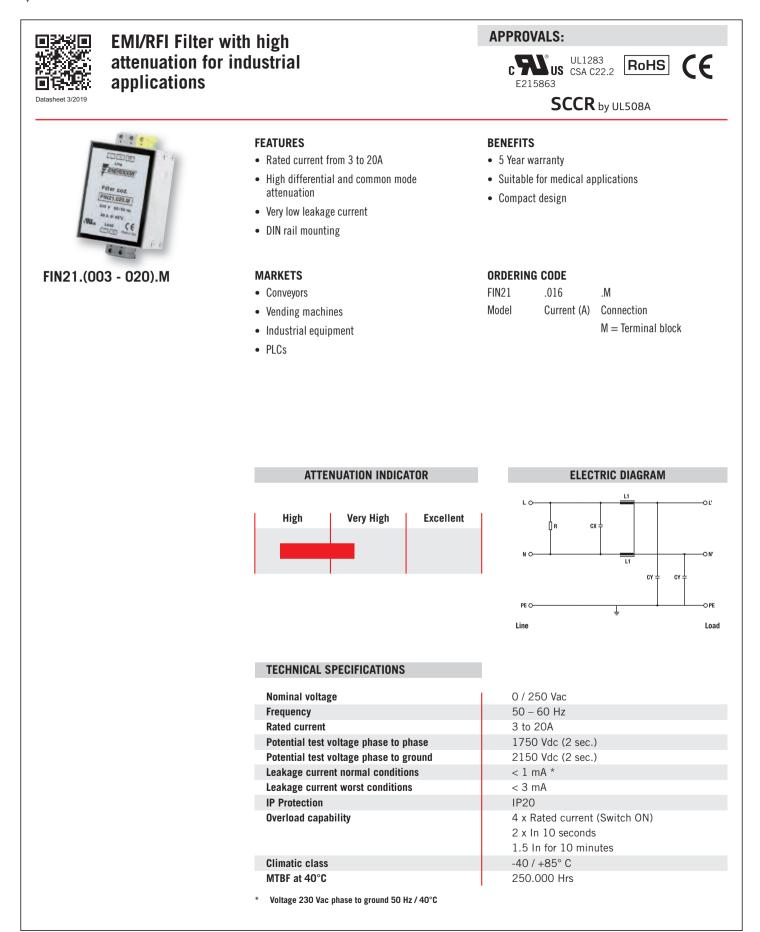
# **Single Phase Filters**

Single phase EMI/RFI filters are used to bring electrical and electronic products into compliance with national and international EMC Standards.


Enerdoor single phase filters carry CE, UL and CSA approvals and offer a current range from 1 to 75A with nominal voltage up to 250 Vac.

Additional select lines are available up to 690 Vac. For all models, a dedicated low leakage current solution is available for medical applications.

This series features various connections such as: IEC plugs, fastons, terminal blocks, cables, screws, and DIN rail mounting for fast and easy installation within the enclosure.


# Single phase EMI/RFI filter applications include:

- Conveyors
- Automated machinery
- Variable frequency drives
- Servo drives
- Medical equipment
- Packaging machinery
- Printing machinery
- Renewable energy
- Power supplies



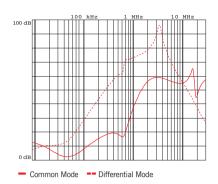








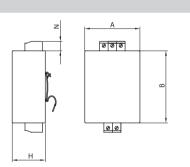



# **ELECTRICAL CHARACTERISTICS**

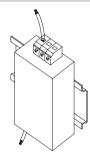
| FIN21  | Rated<br>Current<br>40°C | Rated<br>Current<br>50°C | Power Loss<br>(W) |
|--------|--------------------------|--------------------------|-------------------|
| .003.M | 3                        | 2                        | 1.5               |
| .006.M | 6                        | 5                        | 2.1               |
| .010.M | 10                       | 8                        | 2.8               |
| .016.M | 16                       | 14                       | 3.2               |
| .020.M | 20                       | 17                       | 4                 |

# CONNECTIONS

|     |                                      | LINE                                    |                               |                |  |  |  |  |  |  |
|-----|--------------------------------------|-----------------------------------------|-------------------------------|----------------|--|--|--|--|--|--|
| OSS | Solid<br>Cable<br>(mm <sup>2</sup> ) | Stranded<br>Cable<br>(mm <sup>2</sup> ) | Terminal Block<br>Torque (Nm) | Torque<br>(Nm) |  |  |  |  |  |  |
|     | 0.2 - 6                              | 0.2 - 4                                 | 0.8                           | 0.8            |  |  |  |  |  |  |
|     | 0.2 - 6                              | 0.2 - 4                                 | 0.8                           | 0.8            |  |  |  |  |  |  |
|     | 0.2 - 6                              | 0.2 - 4                                 | 0.8                           | 0.8            |  |  |  |  |  |  |
|     | 0.2 - 6                              | 0.5 - 4                                 | 0.8                           | 0.8            |  |  |  |  |  |  |
|     | 0.2 - 6                              | 0.5 - 4                                 | 0.8                           | 0.8            |  |  |  |  |  |  |


## **TYPICAL ATTENUATION**




#### **MECHANICAL DIMENSIONS mm**

| FIN21  | A  | В  | H  | N  | Weight<br>Kg. | Case |
|--------|----|----|----|----|---------------|------|
| .003.M | 65 | 85 | 39 | 11 | 0.32          | 1    |
| .006.M | 65 | 85 | 39 | 11 | 0.32          | 1    |
| .010.M | 65 | 85 | 39 | 11 | 0.32          | 1    |
| .016.M | 65 | 85 | 39 | 11 | 0.32          | 1    |
| .020.M | 65 | 85 | 39 | 11 | 0.32          | 1    |

CASE 1



### ASSEMBLY CONNECTION "M"

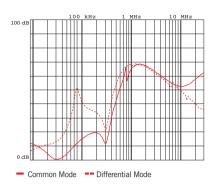








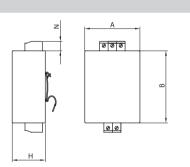



# **ELECTRICAL CHARACTERISTICS**

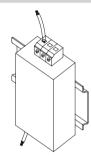
| FIN26  | Rated<br>Current<br>40°C | Rated<br>Current<br>50°C | Power Loss<br>(W) |
|--------|--------------------------|--------------------------|-------------------|
| .003.M | 3                        | 2                        | 1.5               |
| .006.M | 6                        | 5                        | 2.1               |
| .010.M | 10                       | 8                        | 2.8               |
| .016.M | 16                       | 14                       | 3.2               |
| .020.M | 20                       | 17                       | 4                 |

## CONNECTIONS

|     |                                      | LINE                       |                               |                |  |  |  |  |  |
|-----|--------------------------------------|----------------------------|-------------------------------|----------------|--|--|--|--|--|
| oss | Solid<br>Cable<br>(mm <sup>2</sup> ) | Stranded<br>Cable<br>(mm²) | Terminal Block<br>Torque (Nm) | Torque<br>(Nm) |  |  |  |  |  |
|     | 0.2 - 6                              | 0.2 - 4                    | 0.8                           | 0.8            |  |  |  |  |  |
|     | 0.2 - 6                              | 0.2 - 4                    | 0.8                           | 0.8            |  |  |  |  |  |
|     | 0.2 - 6                              | 0.2 - 4                    | 0.8                           | 0.8            |  |  |  |  |  |
|     | 0.2 - 6                              | 0.5 - 4                    | 0.8                           | 0.8            |  |  |  |  |  |
|     | 0.2 - 6                              | 0.5 - 4                    | 0.8                           | 0.8            |  |  |  |  |  |


## **TYPICAL ATTENUATION**




#### **MECHANICAL DIMENSIONS mm**

| FIN26  | A  | В  | H  | N  | Weight<br>Kg. | Case |
|--------|----|----|----|----|---------------|------|
| .003.M | 65 | 85 | 39 | 11 | 0.32          | 1    |
| .006.M | 65 | 85 | 39 | 11 | 0.32          | 1    |
| .010.M | 65 | 85 | 39 | 11 | 0.32          | 1    |
| .016.M | 65 | 85 | 39 | 11 | 0.32          | 1    |
| .020.M | 65 | 85 | 39 | 11 | 0.32          | 1    |

CASE 1



## ASSEMBLY CONNECTION "M"





N27.020.M

FIN27.(003 - 020).M

# FIN27


CE

RoHS



# EMI/RFI Filter with excellent attenuation for industrial and residential applications

sidential applications



- Low leakage current
- DIN rail mounting
- Panel mounting available

#### MARKETS

- Automated machinery
- LED applications
- Variable frequency drives / servo drives
- · Medical equipment

# BENEFITS

• 5 Year warranty

**APPROVALS:** 

E215863

• Excellent differential and common mode attenuation

SCCR by UL508A

**CTUS** UL1283 CSA C22.2

- Compact design
- Helps pass industrial and residential Standards

#### **ORDERING CODE**

| FIN27 | .016        | .M                 |
|-------|-------------|--------------------|
| Model | Current (A) | Connection         |
|       |             | M = Terminal block |

**ATTENUATION INDICATOR ELECTRIC DIAGRAM** LO High Very High Excellent Пв CX = CX NO 0 L1 L2 CY : CY cy 🕇 cy PE O ) PE Ī Line Load **TECHNICAL SPECIFICATIONS** Nominal voltage 0 / 250 Vac Frequency 50 – 60 Hz **Rated current** 3 to 20A Potential test voltage phase to phase 1750 Vdc (2 sec.) Potential test voltage phase to ground 2150 Vdc (2 sec.) Leakage current normal conditions < 1 mA \* Leakage current worst conditions < 3 mA **IP Protection** IP20 **Overload capability** 4 x Rated current (Switch ON)

> 2 x In 10 seconds 1.5 In for 10 minutes

-40 / +85° C

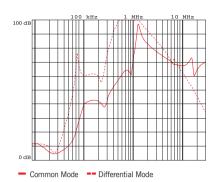
250.000 Hrs

Climatic class MTBF at 40°C

Voltage 230 Vac phase to ground 50 Hz / 40°C



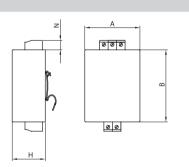



# **ELECTRICAL CHARACTERISTICS**

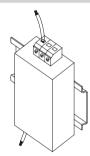
| FIN27  | Rated<br>Current<br>40°C | Rated<br>Current<br>50°C | Power Loss<br>(W) |
|--------|--------------------------|--------------------------|-------------------|
| .003.M | 3                        | 2                        | 1.5               |
| .006.M | 6                        | 5                        | 2.1               |
| .010.M | 10                       | 8                        | 2.8               |
| .016.M | 16                       | 14                       | 3.2               |
| .020.M | 20                       | 17                       | 4                 |

## CONNECTIONS

|    |                                      | LINE                       |                               |                |  |  |  |  |  |  |
|----|--------------------------------------|----------------------------|-------------------------------|----------------|--|--|--|--|--|--|
| SS | Solid<br>Cable<br>(mm <sup>2</sup> ) | Stranded<br>Cable<br>(mm²) | Terminal Block<br>Torque (Nm) | Torque<br>(Nm) |  |  |  |  |  |  |
|    | 0.2 - 6                              | 0.2 - 4                    | 0.8                           | 0.8            |  |  |  |  |  |  |
|    | 0.2 - 6                              | 0.2 - 4                    | 0.8                           | 0.8            |  |  |  |  |  |  |
|    | 0.2 - 6                              | 0.2 - 4                    | 0.8                           | 0.8            |  |  |  |  |  |  |
|    | 0.2 - 6                              | 0.5 - 4                    | 0.8                           | 0.8            |  |  |  |  |  |  |
|    | 0.2 - 6                              | 0.5 - 4                    | 0.8                           | 0.8            |  |  |  |  |  |  |


## TYPICAL ATTENUATION




#### **MECHANICAL DIMENSIONS mm**

| FIN27  | A  | В  | H  | N  | Weight<br>Kg. | Case |
|--------|----|----|----|----|---------------|------|
| .003.M | 65 | 85 | 39 | 11 | 0.32          | 1    |
| .006.M | 65 | 85 | 39 | 11 | 0.32          | 1    |
| .010.M | 65 | 85 | 39 | 11 | 0.32          | 1    |
| .016.M | 65 | 85 | 39 | 11 | 0.32          | 1    |
| .020.M | 65 | 85 | 39 | 11 | 0.32          | 1    |

CASE 1



### ASSEMBLY CONNECTION "M"





# FIN27G



# **EMI/RFI** Filter with excellent attenuation for industrial, residential and medical applications



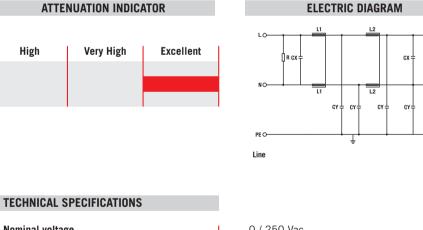
# FIN27G.(003 - 020).M

## FEATURES

- Rated current from 3 to 20A
- Low leakage current
- DIN rail mounting
- Panel mounting available

#### MARKETS

- Automated machinery
- CNC machinery
- Variable frequency drives / servo drives
- Medical equipment


# APPROVALS: UL1283 CSA C22.2 RoHS (C SCCR by UL508A

### BENEFITS

- 5 Year warranty
- Excellent differential and common mode attenuation
- Compact design
- Designed for medical applications

#### **ORDERING CODE**

| FIN2 | 7G | .016        | .M                 |
|------|----|-------------|--------------------|
| Mod  | el | Current (A) | Connection         |
|      |    |             | M = Terminal block |



| Nominal voltage                        | 0 / 250 Vac                   |
|----------------------------------------|-------------------------------|
| Frequency                              | 50 – 60 Hz                    |
| Rated current                          | 3 to 20A                      |
| Potential test voltage phase to phase  | 1750 Vdc (2 sec.)             |
| Potential test voltage phase to ground | 2150 Vdc (2 sec.)             |
| Leakage current normal conditions      | < 0.4 mA *                    |
| Leakage current worst conditions       | < 1.5 mA                      |
| IP Protection                          | IP20                          |
| Overload capability                    | 4 x Rated current (Switch ON) |
|                                        | 2 x In 10 seconds             |
|                                        | 1.5 In for 10 minutes         |
| Climatic class                         | -40 / +85° C                  |
| MTBF at 40°C                           | 250.000 Hrs                   |

\* Voltage 230 Vac phase to ground 50 Hz /  $40^{\circ}$ C



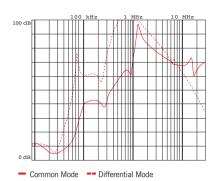
ON

OPE

Load



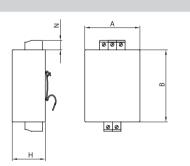
# FIN27G


# **ELECTRICAL CHARACTERISTICS**

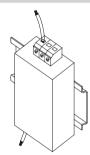
| FIN27G | Rated<br>Current<br>40°C | Rated<br>Current<br>50°C | Power Loss<br>(W) |
|--------|--------------------------|--------------------------|-------------------|
| .003.M | 3                        | 2                        | 1.5               |
| .006.M | 6                        | 5                        | 2.1               |
| .010.M | 10                       | 8                        | 2.8               |
| .016.M | 16                       | 14                       | 3.2               |
| .020.M | 20                       | 17                       | 4                 |

## CONNECTIONS

|     |                                      | PE                         |                               |                |
|-----|--------------------------------------|----------------------------|-------------------------------|----------------|
| ISS | Solid<br>Cable<br>(mm <sup>2</sup> ) | Stranded<br>Cable<br>(mm²) | Terminal Block<br>Torque (Nm) | Torque<br>(Nm) |
|     | 0.2 - 6                              | 0.2 - 4                    | 0.8                           | 0.8            |
|     | 0.2 - 6                              | 0.2 - 4                    | 0.8                           | 0.8            |
|     | 0.2 - 6                              | 0.2 - 4                    | 0.8                           | 0.8            |
|     | 0.2 - 6                              | 0.5 - 4                    | 0.8                           | 0.8            |
|     | 0.2 - 6                              | 0.5 - 4                    | 0.8                           | 0.8            |


## **TYPICAL ATTENUATION**




#### **MECHANICAL DIMENSIONS mm**

| FIN27G | A  | В  | H  | N  | Weight<br>Kg. | Case |
|--------|----|----|----|----|---------------|------|
| .003.M | 65 | 85 | 39 | 11 | 0.32          | 1    |
| .006.M | 65 | 85 | 39 | 11 | 0.32          | 1    |
| .010.M | 65 | 85 | 39 | 11 | 0.32          | 1    |
| .016.M | 65 | 85 | 39 | 11 | 0.32          | 1    |
| .020.M | 65 | 85 | 39 | 11 | 0.32          | 1    |

CASE 1



## ASSEMBLY CONNECTION "M"







# **EMI/RFI** Filter with high attenuation for industrial and residential applications

# **APPROVALS:**





FIN33.(003 - 020).F

# **FEATURES**

- Rated current from 3 to 75A
- Very low leakage current
- Faston connections
- Panel mounting

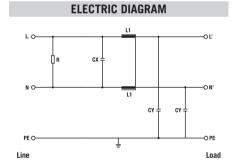
#### MARKETS

- Conveyors
- · Vending machinery
- Power supplies
- · Medical equipment

### **BENEFITS**

- 5 Year warranty
- High differential and common mode attenuation
- Very compact design
- Excellent quality and value

#### **ORDERING CODE**


| FIN33 | .020        | .F         |
|-------|-------------|------------|
| Model | Current (A) | Connection |
|       |             | F = Faston |
|       |             | V = Screws |



FIN33.(040 - 075).V

| High | Very High | Excellent |
|------|-----------|-----------|
|      |           |           |

**ATTENUATION INDICATOR** 



#### **TECHNICAL SPECIFICATIONS**

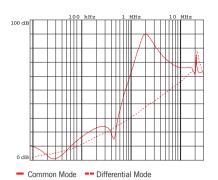
| Nominal voltage                        | 0 / 25  |
|----------------------------------------|---------|
| Frequency                              | 50 – 6  |
| Rated current                          | 3 to 7  |
| Potential test voltage phase to phase  | 1750    |
| Potential test voltage phase to ground | 2150    |
| Leakage current normal conditions      | < 1 m   |
| Leakage current worst conditions       | < 3 m   |
| IP Protection                          | IP00    |
| Overload capability                    | 4 x Ra  |
|                                        | 2 x In  |
|                                        | 1.5 In  |
| Climatic class                         | -40 / - |
| MTBF at 40°C                           | 250.0   |

Voltage 230 Vac phase to ground 50 Hz /  $40^\circ\text{C}$ 

| 0 / 250 Vac                   |
|-------------------------------|
| 50 – 60 Hz                    |
| 3 to 75A                      |
| 1750 Vdc (2 sec.)             |
| 2150 Vdc (2 sec.)             |
| < 1 mA *                      |
| < 3 mA                        |
| IPOO                          |
| 4 x Rated current (Switch ON) |
| 2 x In 10 seconds             |
| 1.5 In for 10 minutes         |
| -40 / +85° C                  |
| 250.000 Hrs                   |
|                               |



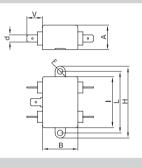



# **ELECTRICAL CHARACTERISTICS**

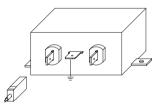
| FIN33  | Rated<br>Current<br>40°C | Rated<br>Current<br>50°C | Power Loss<br>(W) |
|--------|--------------------------|--------------------------|-------------------|
| .003.F | 3                        | 2                        | 1.5               |
| .006.F | 6                        | 5                        | 2.1               |
| .010.F | 10                       | 8                        | 2.8               |
| .020.F | 20                       | 16                       | 3.8               |
| .040.V | 40                       | 32                       | 4.5               |
| .050.V | 50                       | 40                       | 5.5               |
| .075.V | 75                       | 60                       | 7                 |

#### CONNECTIONS

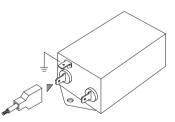
|   |                         | LINE                                    | P                          | РЕ –       |                |
|---|-------------------------|-----------------------------------------|----------------------------|------------|----------------|
| S | Solid<br>Cable<br>(mm²) | Stranded<br>Cable<br>(mm <sup>2</sup> ) | Terminal<br>Torque<br>(Nm) | d1<br>(mm) | Torque<br>(Nm) |
|   | 0.2 - 6                 | 0.5 - 4                                 | -                          | -          | -              |
|   | 0.2 - 6                 | 0.5 - 4                                 | -                          | -          | -              |
|   | 0.2 - 6                 | 0.5 - 4                                 | -                          | -          | -              |
|   | 0.2 - 6                 | 0.5 - 4                                 | -                          | -          | -              |
|   | -                       | -                                       | 4                          | M5         | 4              |
|   | -                       | -                                       | 6                          | M6         | 4              |
|   | -                       | -                                       | 14                         | M8         | 4              |


### TYPICAL ATTENUATION

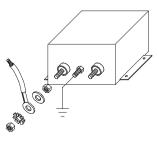



# **MECHANICAL DIMENSIONS mm**

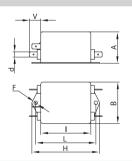
| FIN33  | A    | В    | ۷  | F   | H   | I.  | L   | N   | d   | Weight<br>Kg. | Case |
|--------|------|------|----|-----|-----|-----|-----|-----|-----|---------------|------|
| .003.F | 20.5 | 33   | 14 | 5   | 66  | 45  | 56  | -   | 6.5 | 0.13          | 1    |
| .006.F | 20.5 | 33   | 14 | 5   | 66  | 45  | 56  | -   | 6.5 | 0.13          | 1    |
| .010.F | 20.5 | 33   | 14 | 5   | 66  | 45  | 56  | -   | 6.5 | 0.2           | 1    |
| .020.F | 39   | 51.8 | 14 | 5   | 84  | 65  | 74  | -   | 6.5 | 0.18          | 2    |
| .040.V | 40   | 86.6 | 20 | 6x4 | 107 | 100 | 55  | 96  | M5  | 0.18          | 3    |
| .050.V | 50   | 100  | 25 | 6x4 | 125 | 180 | 120 | 115 | M6  | 0.30          | 4    |
| .075.V | 72   | 120  | 30 | 8x4 | 152 | 182 | 120 | 135 | M8  | 0.40          | 5    |


CASE 1

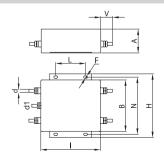



# **ASSEMBLY CONNECTION "F"**




## **ASSEMBLY CONNECTION "F"**

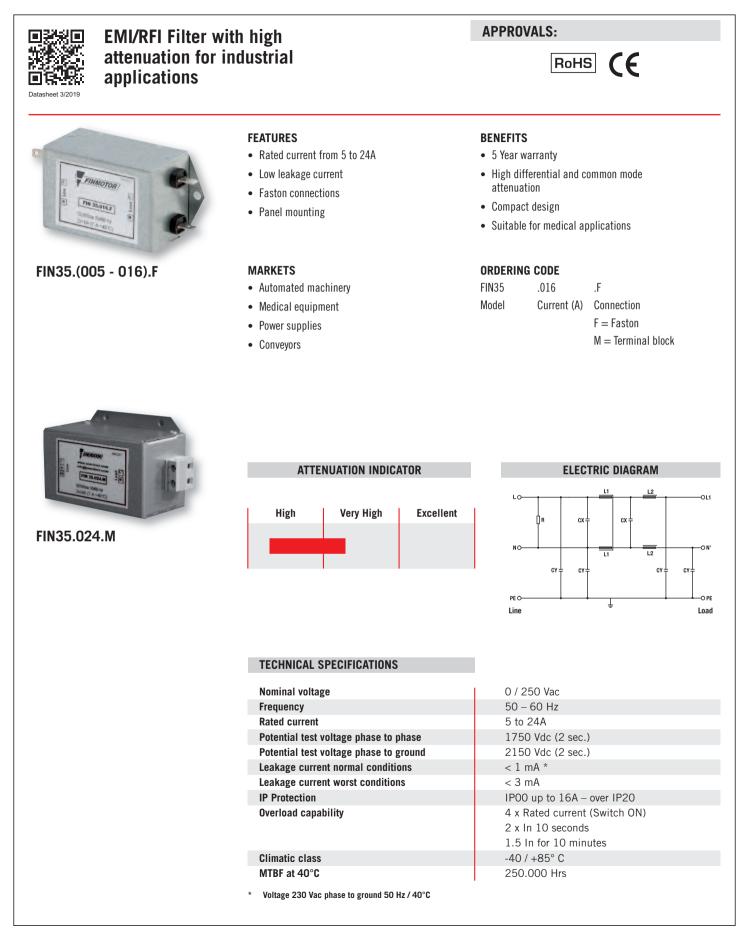



## **ASSEMBLY CONNECTION "V"**








# CASE 3, 4, 5





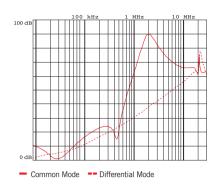


Single Phase Filter





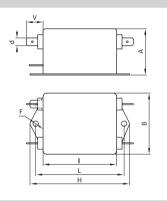



# **ELECTRICAL CHARACTERISTICS**

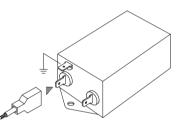
| FIN35  | Rated<br>Current<br>40°C | Rated<br>Current<br>50°C | Power Loss<br>(W) |
|--------|--------------------------|--------------------------|-------------------|
| .005.F | 5                        | 3                        | 2                 |
| .010.F | 10                       | 7                        | 2.7               |
| .016.F | 16                       | 12                       | 5                 |
| .024.M | 24                       | 20                       | 6                 |

|      | <br> |      |
|------|------|------|
|      |      | ONS  |
|      |      |      |
| - 00 |      | 0110 |

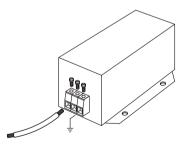
|   |                                                                        | LINE    |                               |                |  |  |  |  |  |
|---|------------------------------------------------------------------------|---------|-------------------------------|----------------|--|--|--|--|--|
| s | Solid Stranded<br>Cable Cable<br>(mm <sup>2</sup> ) (mm <sup>2</sup> ) |         | Terminal Block<br>Torque (Nm) | Torque<br>(Nm) |  |  |  |  |  |
|   | 0.2 - 6                                                                | 0.5 - 4 | -                             | -              |  |  |  |  |  |
|   | 0.2 - 6                                                                | 0.5 - 4 | -                             | -              |  |  |  |  |  |
|   | 0.2 - 6                                                                | 0.5 - 4 | -                             | -              |  |  |  |  |  |
|   | 0.2 - 6                                                                | 0.5 - 4 | 0.8                           | 0.8            |  |  |  |  |  |


### **TYPICAL ATTENUATION**

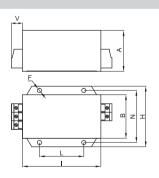



### **MECHANICAL DIMENSIONS mm**

| FIN35  | A    | В  | ۷    | F   | H    | I.   | L    | N  | d   | Weight<br>Kg. | Case |  |
|--------|------|----|------|-----|------|------|------|----|-----|---------------|------|--|
| .005.F | 29   | 51 | 13.5 | 4.5 | 84.5 | 63.5 | 74.5 | -  | 6.5 | 0.13          | 1    |  |
| .010.F | 33   | 51 | 13.5 | 4.5 | 84.5 | 63.5 | 74.5 | -  | 6.5 | 0.18          | 2    |  |
| .016.F | 39.5 | 51 | 13.5 | 4.5 | 97   | 75.5 | 86.5 | -  | 6.5 | 0.26          | 3    |  |
| .024.M | 49.5 | 51 | 13   | 4.5 | 70   | 93   | 51   | 60 | -   | 0.46          | 4    |  |

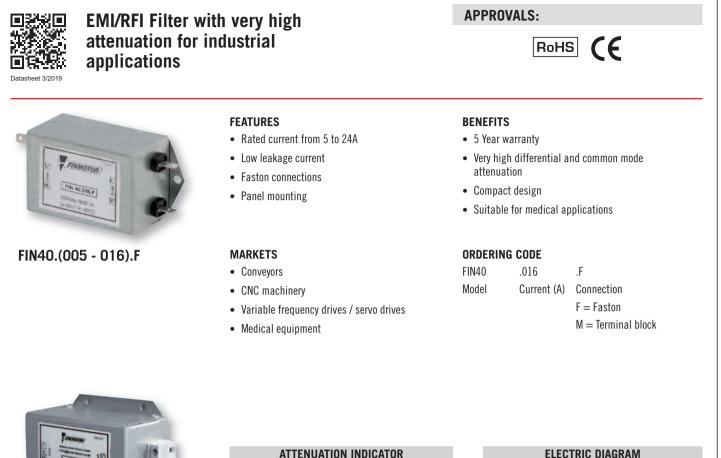

CASE 1, 2, 3




# ASSEMBLY CONNECTION "F"



#### ASSEMBLY CONNECTION "M"




## CASE 4









FIN40.024.M

| 81     | ATTENUATION INDICA            | TOR       | ELEC              | TRIC DIAGRAM               |
|--------|-------------------------------|-----------|-------------------|----------------------------|
| Н      | igh Very High                 | Excellent |                   |                            |
| TECH   | INICAL SPECIFICATIONS         |           | CY - CY<br>PEO    | - cr∔ cr∔<br>↓ OPE<br>Load |
| Nomi   | nal voltage                   | 1         | 0 / 250 Vac       |                            |
| Frequ  | iency                         |           | 50 – 60 Hz        |                            |
| Rated  | l current                     |           | 5 to 24A          |                            |
| Poter  | ntial test voltage phase to p | hase      | 1750 Vdc (2 sec.) |                            |
|        | itial test voltage phase to g |           | 2150 Vdc (2 sec.) | )                          |
|        | age current normal conditio   |           | < 1.5 mA *        |                            |
|        | age current worst condition   | s         | < 5 mA            |                            |
| IP Pro | otection                      |           | IP20              |                            |

| Nominal voltage                        | 0 / 250 Vac                   |
|----------------------------------------|-------------------------------|
| Frequency                              | 50 – 60 Hz                    |
| Rated current                          | 5 to 24A                      |
| Potential test voltage phase to phase  | 1750 Vdc (2 sec.)             |
| Potential test voltage phase to ground | 2150 Vdc (2 sec.)             |
| Leakage current normal conditions      | < 1.5 mA *                    |
| Leakage current worst conditions       | < 5 mA                        |
| IP Protection                          | IP20                          |
| Overload capability                    | 4 x Rated current (Switch ON) |
|                                        | 2 x In 10 seconds             |
|                                        | 1.5 In for 10 minutes         |
| Climatic class                         | -40 / +85° C                  |
| MTBF at 40°C                           | 250.000 Hrs                   |

Voltage 230 Vac phase to ground 50 Hz /  $40^\circ\text{C}$ \*





# **ELECTRICAL CHARACTERISTICS**

| FIN40  | Rated<br>Current<br>40°C | Rated<br>Current<br>50°C | Power Loss<br>(W) |
|--------|--------------------------|--------------------------|-------------------|
| .005.F | 5                        | 3                        | 2                 |
| .010.F | 10                       | 7                        | 2.7               |
| .016.F | 16                       | 12                       | 5                 |
| .024.M | 24                       | 20                       | 6                 |

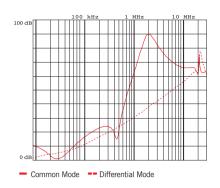
| CONN                    | ECTIONS                    |                              |
|-------------------------|----------------------------|------------------------------|
|                         | LINE                       |                              |
| Solid<br>Cable<br>(mm²) | Stranded<br>Cable<br>(mm²) | Terminal Bloc<br>Torque (Nm) |

0.5 - 4

0.5 - 4

0.5 - 4

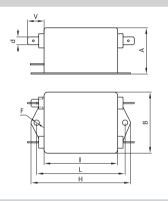
0.5 - 4


0.2 - 6

0.2 - 6

0.2 - 6

0.2 - 6


## **TYPICAL ATTENUATION**



#### **MECHANICAL DIMENSIONS mm**

| FIN40  | A    | В  | ۷    | F   | H    | I.   | L    | N  | d   | Weight<br>Kg. | Case |  |
|--------|------|----|------|-----|------|------|------|----|-----|---------------|------|--|
| .005.F | 29   | 51 | 13.5 | 4.5 | 84.5 | 63.5 | 74.5 | -  | 6.5 | 0.13          | 1    |  |
| .010.F | 33   | 51 | 13.5 | 4.5 | 84.5 | 63.5 | 74.5 | -  | 6.5 | 0.18          | 2    |  |
| .016.F | 39.5 | 51 | 13.5 | 4.5 | 97   | 75.5 | 86.5 | -  | 6.5 | 0.26          | 3    |  |
| .024.M | 49.5 | 51 | 13   | 4.5 | 70   | 93   | 51   | 60 | -   | 0.46          | 4    |  |

CASE 1, 2, 3

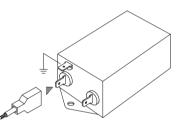


#### **ASSEMBLY CONNECTION "F"**

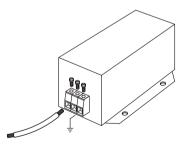
PE Torque (Nm)

-

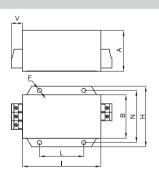
-


0.8

nck

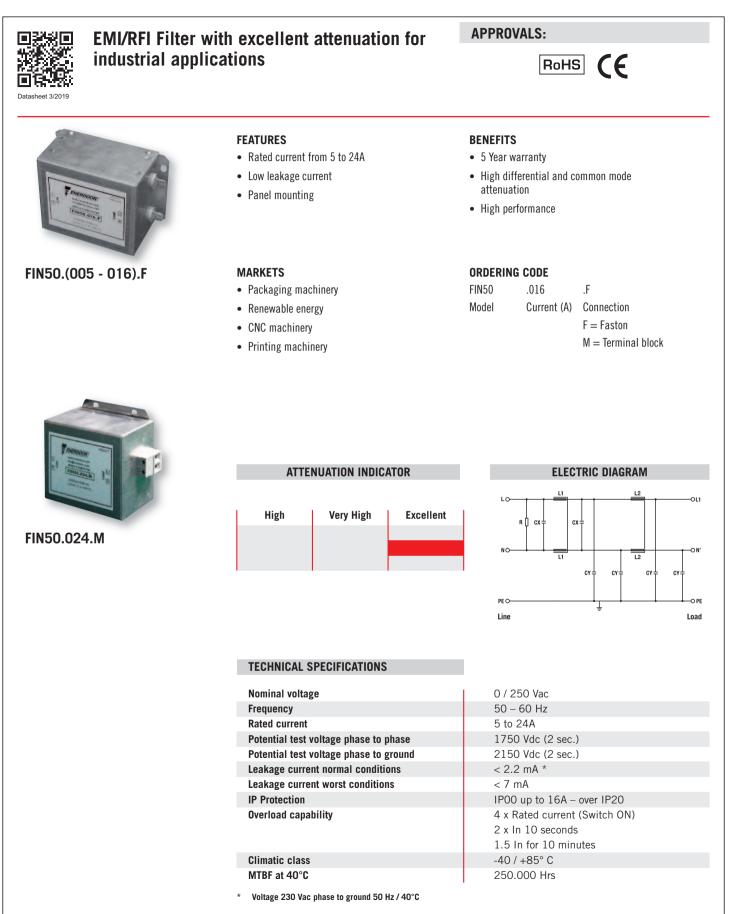

\_

\_


0.8



#### **ASSEMBLY CONNECTION "M"**




#### CASE 4



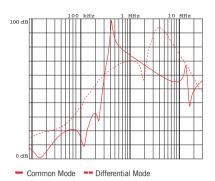











# ELECTRICAL CHARACTERISTICS

| FIN50  | Rated<br>Current<br>40°C | Rated<br>Current<br>50°C | Power Loss<br>(W) |
|--------|--------------------------|--------------------------|-------------------|
| .005.F | 5                        | 3                        | 2                 |
| .010.F | 10                       | 7                        | 2.7               |
| .016.F | 16                       | 12                       | 5                 |
| .024.M | 24                       | 20                       | 6                 |

## CONNECTIONS

|   |                                      | PE                         |                               |                |
|---|--------------------------------------|----------------------------|-------------------------------|----------------|
| ; | Solid<br>Cable<br>(mm <sup>2</sup> ) | Stranded<br>Cable<br>(mm²) | Terminal Block<br>Torque (Nm) | Torque<br>(Nm) |
|   | 0.2 - 6                              | 0.5 - 4                    | -                             | -              |
|   | 0.2 - 6                              | 0.5 - 4                    | -                             | -              |
|   | 0.2 - 6                              | 0.5 - 4                    | -                             | -              |
|   | 0.2 - 6                              | 0.5 - 4                    | 0.8                           | 0.8            |

## **TYPICAL ATTENUATION**

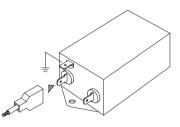


#### **MECHANICAL DIMENSIONS mm**

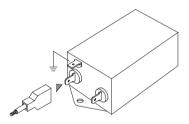
| FIN50  | A    | В    | ۷    | F   | H    | I.   | L    | N  | d   | Weight<br>Kg. | Case |
|--------|------|------|------|-----|------|------|------|----|-----|---------------|------|
| .005.F | 39   | 51   | 13.5 | 4.5 | 84.5 | 63.5 | 74.5 | -  | 6.5 | 0.20          | 1    |
| .010.F | 49.5 | 51   | 13.5 | 4.5 | 97   | 75.5 | 86.5 | -  | 6.5 | 0.35          | 2    |
| .016.F | 45   | 84.5 | 13.5 | 4.5 | 105  | 99.5 | 51   | 95 | 6.5 | 0.70          | 3    |
| .024.M | 49.5 | 84.5 | 13   | 4.5 | 105  | 99.5 | 51   | 95 | -   | 0.93          | 4    |

# CASE 1, 2

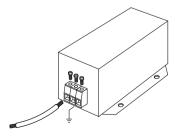



Ъ

V

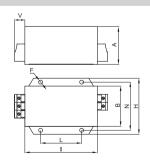

Н

•


# ASSEMBLY CONNECTION "F"

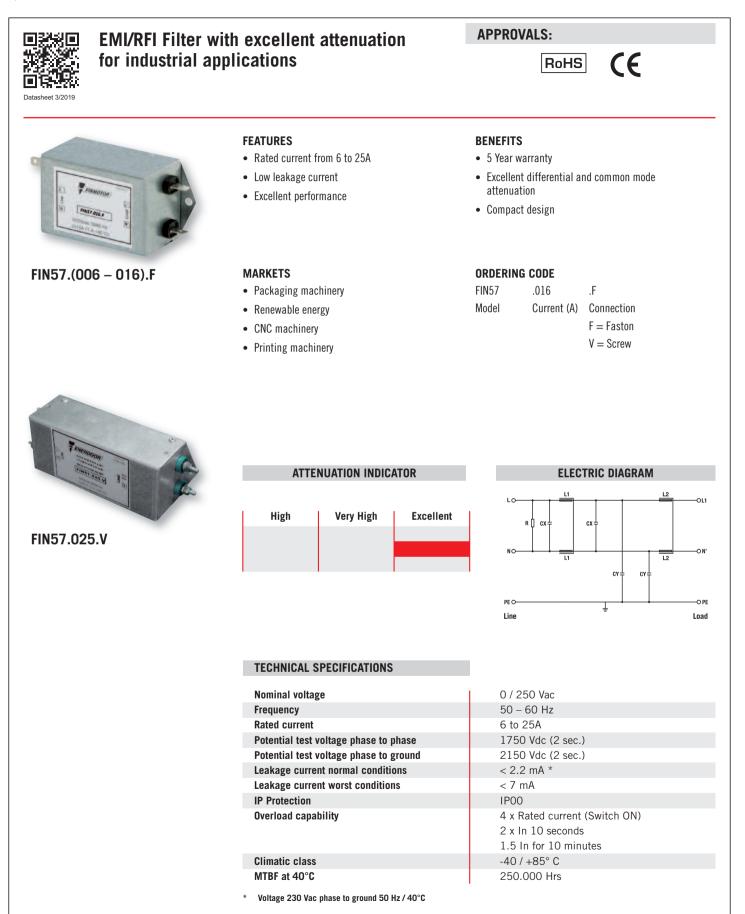


# ASSEMBLY CONNECTION "F"




# ASSEMBLY CONNECTION "M"




CASE 4

CASE 3



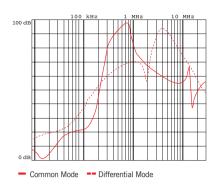








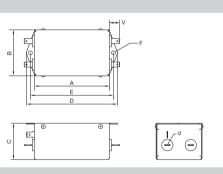



# ELECTRICAL CHARACTERISTICS

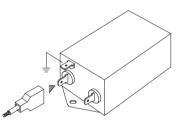
| FIN57  | Rated<br>Current<br>40°C | Rated<br>Current<br>50°C | Power Loss<br>(W) |
|--------|--------------------------|--------------------------|-------------------|
| .006.F | 6                        | 4                        | 2                 |
| .010.F | 10                       | 7                        | 2.7               |
| .016.F | 16                       | 12                       | 5                 |
| .025.V | 25                       | 20                       | 6                 |

| 5 |
|---|
|   |
|   |

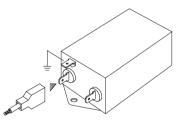
|                         | LINE                       | P                          | E          |                |
|-------------------------|----------------------------|----------------------------|------------|----------------|
| Solid<br>Cable<br>(mm²) | Stranded<br>Cable<br>(mm²) | Terminal<br>Torque<br>(Nm) | d1<br>(mm) | Torque<br>(Nm) |
| 0.2 - 6                 | 0.5 - 4                    | -                          | -          | -              |
| 0.2 - 6                 | 0.5 - 4                    | -                          | -          | -              |
| 0.2 - 6                 | 0.5 - 4                    | -                          | -          | -              |
| -                       | -                          | -                          | M4         | 3              |


## **TYPICAL ATTENUATION**

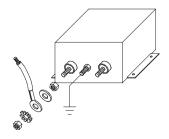



## **MECHANICAL DIMENSIONS mm**

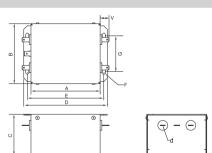
| FIN57  | A     | В    | C    | D   | E   | F    | G  | ۷    | d   | d1 | Weight<br>Kg. | Case |  |
|--------|-------|------|------|-----|-----|------|----|------|-----|----|---------------|------|--|
| .006.F | 93    | 57   | 45   | 113 | 103 | 4.75 | -  | 12.7 | 6.3 | -  | 0.45          | 1    |  |
| .010.F | 93    | 57   | 45   | 113 | 103 | 4.75 | -  | 12.7 | 6.3 | -  | 0.47          | 1    |  |
| .016.F | 98.5  | 85.5 | 57.6 | 119 | 109 | 4.4  | 51 | 12.7 | 6.3 | -  | 0.59          | 2    |  |
| .025.V | 130.5 | 56   | 45   | 156 | 143 | 6    | -  | 15   | M4  | M4 | 0.61          | 3    |  |


CASE 1

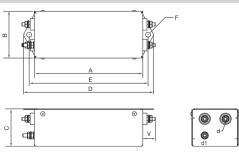



## ASSEMBLY CONNECTION "F"




# ASSEMBLY CONNECTION "F"

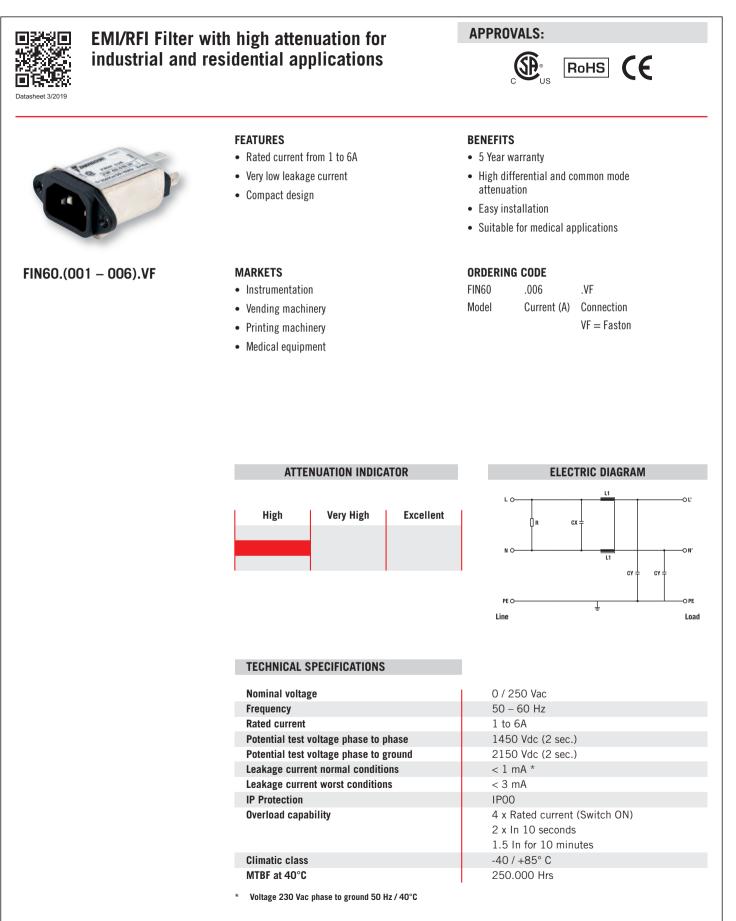



# ASSEMBLY CONNECTION "V"








#### CASE 3



SINGLE PHASE FILTER

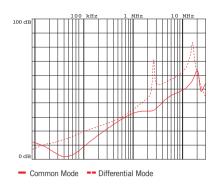








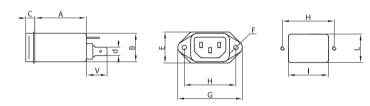



# **ELECTRICAL CHARACTERISTICS**

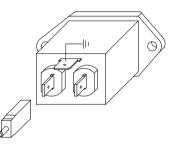
| FIN60   | Rated<br>Current<br>40°C | Rated<br>Current<br>50°C | Power Loss<br>(W) |  |
|---------|--------------------------|--------------------------|-------------------|--|
| .001.VF | 1                        | 0.7                      | 1                 |  |
| .003.VF | 3                        | 2.4                      | 2                 |  |
| .006.VF | 6                        | 4                        | 3                 |  |

| CONNECTIONS |
|-------------|
|-------------|

|      |                                      | LINE                       |                               | PE             |
|------|--------------------------------------|----------------------------|-------------------------------|----------------|
| Loss | Solid<br>Cable<br>(mm <sup>2</sup> ) | Stranded<br>Cable<br>(mm²) | Terminal Block<br>Torque (Nm) | Torque<br>(Nm) |
|      | 0.2 - 6                              | 0.5 - 4                    | -                             | -              |
|      | 0.2 - 6                              | 0.5 - 4                    | -                             | -              |
|      | 0.2 - 6                              | 0.5 - 4                    | -                             | -              |

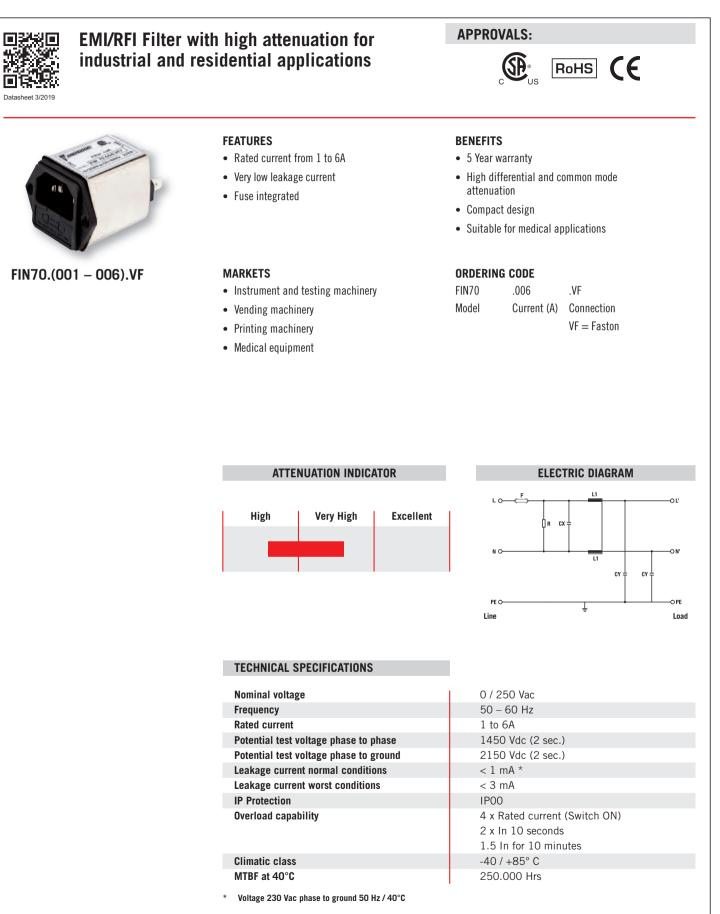

## TYPICAL ATTENUATION




#### **MECHANICAL DIMENSIONS mm**

| FIN60   | A  | В  | ۷  | F   | H  | I  | L  | C | E  | G  | d   | Weight<br>Kg. | Case |
|---------|----|----|----|-----|----|----|----|---|----|----|-----|---------------|------|
| .001.VF | 40 | 22 | 14 | 3.5 | 40 | 31 | 23 | 7 | 24 | 50 | 6.5 | 0.10          | 1    |
| .003.VF | 40 | 22 | 14 | 3.5 | 40 | 31 | 23 | 7 | 24 | 50 | 6.5 | 0.10          | 1    |
| .006.VF | 40 | 22 | 14 | 3.5 | 40 | 31 | 23 | 7 | 24 | 50 | 6.5 | 0.11          | 1    |

## CASE 1




#### ASSEMBLY CONNECTION "VF"



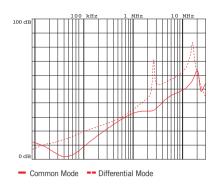








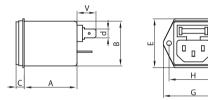



# **ELECTRICAL CHARACTERISTICS**

| FIN70   | Rated<br>Current<br>40°C | Rated<br>Current<br>50°C | Power Loss<br>(W) |
|---------|--------------------------|--------------------------|-------------------|
| .001.VF | 1                        | 0.7                      | 1                 |
| .003.VF | 3                        | 2.4                      | 2                 |
| .006.VF | 6                        | 4                        | 3                 |

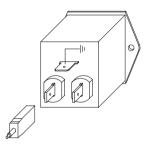
| CO | IN N | Er | TIO | MC |
|----|------|----|-----|----|
| 60 |      | LU | 110 |    |
|    |      |    |     |    |

|     |                                      | LINE                       |                               | PE             |
|-----|--------------------------------------|----------------------------|-------------------------------|----------------|
| oss | Solid<br>Cable<br>(mm <sup>2</sup> ) | Stranded<br>Cable<br>(mm²) | Terminal Block<br>Torque (Nm) | Torque<br>(Nm) |
|     | 0.2 - 6                              | 0.5 - 4                    | -                             | -              |
|     | 0.2 - 6                              | 0.5 - 4                    | -                             | -              |
|     | 0.2 - 6                              | 0.5 - 4                    | -                             | -              |


# TYPICAL ATTENUATION



### **MECHANICAL DIMENSIONS mm**


| FIN70   | A  | В  | ۷  | F   | H  | I.   | L    | C | E  | G  | d   | Weight<br>Kg. | Case |
|---------|----|----|----|-----|----|------|------|---|----|----|-----|---------------|------|
| .001.VF | 40 | 33 | 14 | 3.5 | 36 | 29.5 | 33.5 | 7 | 36 | 45 | 6.5 | 0.12          | 1    |
| .003.VF | 40 | 33 | 14 | 3.5 | 36 | 29.5 | 33.5 | 7 | 36 | 45 | 6.5 | 0.12          | 1    |
| .006.VF | 40 | 33 | 14 | 3.5 | 36 | 29.5 | 33.5 | 7 | 36 | 45 | 6.5 | 0.12          | 1    |

CASE 1






#### ASSEMBLY CONNECTION "VF"



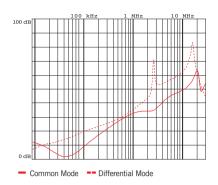








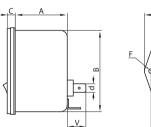


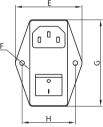

#### **ELECTRICAL CHARACTERISTICS**

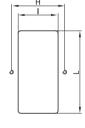
| FIN80    | Rated<br>Current<br>40°C | Rated<br>Current<br>50°C | Power Loss<br>(W) |
|----------|--------------------------|--------------------------|-------------------|
| .001.VFI | 1                        | 0.7                      | 1                 |
| .003.VFI | 3                        | 2.5                      | 2                 |
| .006.VFI | 6                        | 4                        | 3                 |
| .010.VFI | 10                       | 8                        | 5                 |

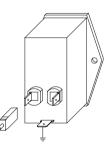
| CONNECTIONS |
|-------------|
|             |

|                         | PE                                      |                               |                |  |  |
|-------------------------|-----------------------------------------|-------------------------------|----------------|--|--|
| Solid<br>Cable<br>(mm²) | Stranded<br>Cable<br>(mm <sup>2</sup> ) | Terminal Block<br>Torque (Nm) | Torque<br>(Nm) |  |  |
| 02 6                    | 02 6                                    | -                             | -              |  |  |
| 02 6                    | 02 6                                    | -                             | -              |  |  |
| 02 6                    | 02 6                                    | -                             | -              |  |  |
| 02 6                    | 02 6                                    | -                             | -              |  |  |


#### TYPICAL ATTENUATION





#### **MECHANICAL DIMENSIONS mm**


| FIN80    | A  | В  | ۷  | F   | H  | I. | L  | C | E  | G  | d   | Weight<br>Kg. | Case |
|----------|----|----|----|-----|----|----|----|---|----|----|-----|---------------|------|
| .001.VFI | 39 | 61 | 14 | 3.5 | 40 | 30 | 62 | 6 | 50 | 65 | 6.5 | 0.20          | 1    |
| .003.VFI | 39 | 61 | 14 | 3.5 | 40 | 30 | 62 | 6 | 50 | 65 | 6.5 | 0.20          | 1    |
| .006.VFI | 39 | 61 | 14 | 3.5 | 40 | 30 | 62 | 6 | 50 | 65 | 6.5 | 0.21          | 1    |
| .010.VFI | 39 | 61 | 14 | 3.5 | 40 | 30 | 62 | 6 | 50 | 65 | 6.5 | 0.22          | 1    |

CASE 1











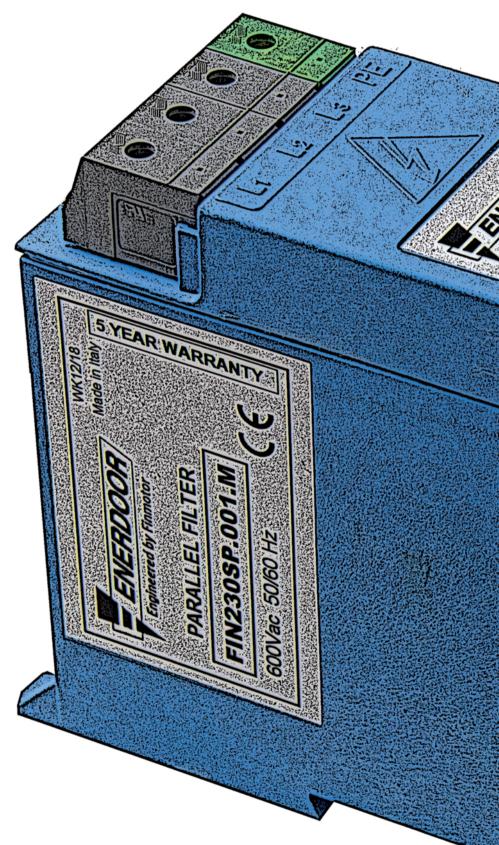


|                              |                         |         |        |             | CONNE  | CTOR  | S      |                   |            | FI                 | EATUR              | ES         |                 |             | APP        | LICAT            | IONS                |                    |                |
|------------------------------|-------------------------|---------|--------|-------------|--------|-------|--------|-------------------|------------|--------------------|--------------------|------------|-----------------|-------------|------------|------------------|---------------------|--------------------|----------------|
| Filter<br>Selection<br>Guide | Description             | age     | ц      | inal Blocks | NS     | Bar   | SS     | Connector/ Faston | Rail Mount | Cable Applications | Att. Low Frequency | Case Style | Leakage Current | iple Drives | Automation | Renewable Energy | Commercial Building | Recharging Station | oval           |
| Parallel Filters             | Deso                    | Voltage | Faston | Terminal    | Screws | Bus I | Cables | IEC 0             | DIN        | Long               | High               | Book       | Low             | Multiple    | Autor      | Rene             | Comr                | Rech               | Approval       |
| FIN130SP                     | 3-phase                 | 0-600   |        | ×           |        |       |        |                   | ×          | ×                  | ×                  |            |                 |             | ×          |                  | ×                   |                    | c <b>W</b> us  |
| FIN230SP                     | 3-phase                 | 0-600   |        | ×           |        |       |        |                   | ×          | ×                  | ×                  |            |                 | ×           | ×          | ×                |                     |                    | c <b>W</b> us  |
| FIN730                       | 3-phase                 | 0-750   |        | ×           |        |       |        |                   | ×          |                    | ×                  |            |                 | ×           | ×          | ×                |                     | ×                  | c <b>W</b> us  |
| FIN735                       | 3-phase                 | 0-650   |        | ×           |        |       |        |                   | ×          |                    |                    |            |                 |             |            |                  | ×                   |                    | c <b>W</b> us  |
| FIN740                       | 3-phase plus<br>neutral | 0-600   |        | ×           |        |       |        |                   | ×          | ×                  | ×                  |            |                 | ×           | ×          | ×                |                     | x                  | c <b>RL</b> us |







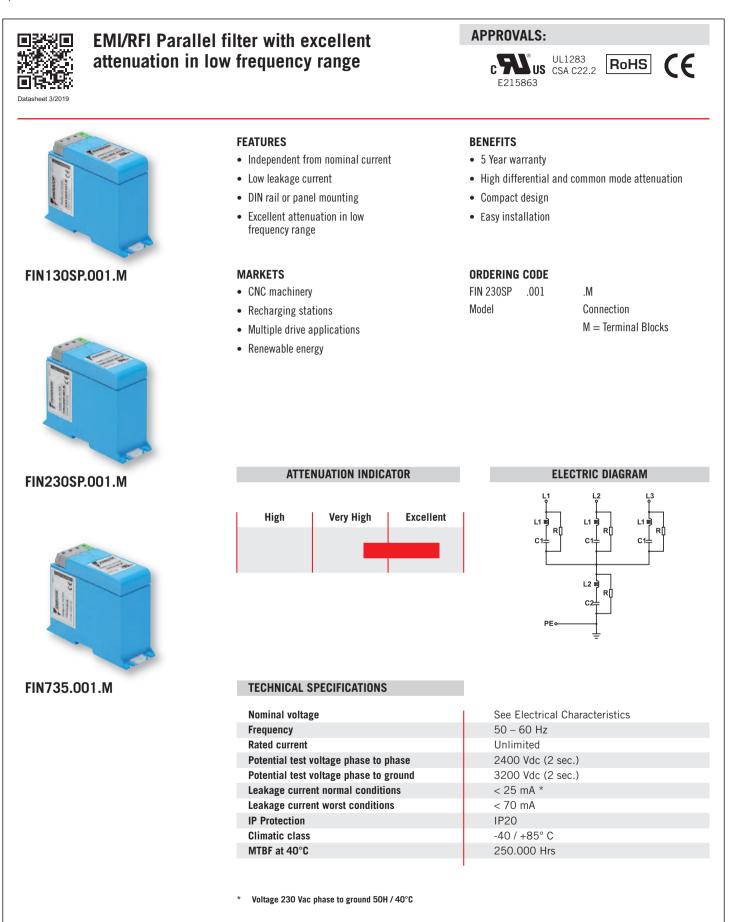

Enerdoor parallel filters provide protection from variable frequency drives, SCRs, controllers, and other high commutation electrical equipment. This line provides high attenuation in the frequency range of 10 kHz to 5 MHz offering a solution for applications with low to medium frequency concerns. When used in conjunction with other Enerdoor filters, this combination ensures EMI/RFI protection for equipment in any environment.

This series offers a unique solution available with nominal voltage up to 750 Vac and any current level due to the parallel connection to the line. Offered in 3 phase and 3 phase plus neutral, this line carries CE and UL approvals.

The FIN730 and FIN740 filters reduce EMI interference in the 30 kHz to 10 MHz frequency range. The FIN230 filter has a resonance frequency of 150 kHz and provides a significant interference reduction in the frequency range of 50 kHz to 5 MHz. This series features panel and DIN rail mounting for fast and easy installation.

#### Parallel filter applications include:

- CNC machinery
- Recharging stations
- Multiple drive applications
- Renewable energy
- SCR applications








### FIN130SP/FIN230SP/FIN735

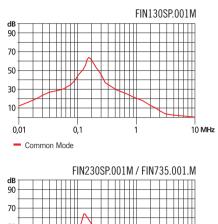
Three Phase Parallel Filters







## FIN130SP/FIN230SP/FIN735

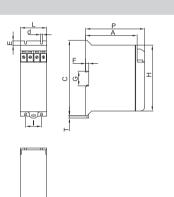

CONNECTIONS

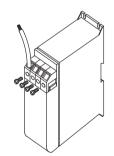
Three Phase Parallel Filters

#### **ELECTRICAL CHARACTERISTICS**

|                |                                |                                |                      |                         | LINE                       |                                  | PE             |
|----------------|--------------------------------|--------------------------------|----------------------|-------------------------|----------------------------|----------------------------------|----------------|
| Model          | Nominal<br>Voltage<br>AC (Vac) | Nominal<br>Voltage<br>DC (Vdc) | Power<br>Loss<br>(W) | Solid<br>Cable<br>(mm²) | Stranded<br>Cable<br>(mm²) | Terminal<br>Block Torque<br>(Nm) | Torque<br>(Nm) |
| FIN130SP.001.M | 600                            | 1000                           | 10                   | 1 - 4                   | 1 - 4                      | 1.8                              | 1.8            |
| FIN230SP.001.M | 600                            | 1000                           | 10                   | 1 - 4                   | 1 - 4                      | 1.8                              | 1.8            |
| FIN735.001.M   | 650                            | 1100                           | 10                   | 1 - 4                   | 1 - 4                      | 1.8                              | 1.8            |

#### TYPICAL ATTENUATION





#### 70 50 30 10 0,01 0,1 1 10 MHz Common Mode

#### MECHANICAL DIMENSIONS mm

| Model          | L  | d   | E  | I  | Р   | A   | C   | T | G    | F | H   | Weight<br>Kg. | Case |  |
|----------------|----|-----|----|----|-----|-----|-----|---|------|---|-----|---------------|------|--|
| FIN130SP.001.M | 59 | 4.5 | 10 | 35 | 130 | 112 | 166 | 4 | 37.5 | 7 | 146 | 1.15          | 1    |  |
| FIN230SP.001.M | 59 | 4.5 | 10 | 35 | 130 | 112 | 166 | 4 | 37.5 | 7 | 146 | 1.15          | 1    |  |
| FIN735.001.M   | 59 | 4.5 | 10 | 35 | 130 | 112 | 166 | 4 | 37.5 | 7 | 146 | 1.15          | 1    |  |

#### CASE 1











# **EMI/RFI** Parallel filter with excellent attenuation in low frequency range



FIN730.001.M (C - LCP)

#### FEATURES

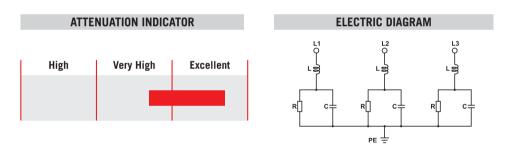
- Independent from nominal current
- Low leakage current
- DIN rail or panel mounting
- Excellent attenuation in low frequency range

#### MARKETS

- CNC machinery
- Recharging stations
- Multiple drive applications
- Renewable energy

### APPROVALS:




#### BENEFITS

- 5 Year warranty
- High differential and common mode attenuation
- Compact design
- Easy installation

#### ORDERING CODE

| FIN 730.001. | .M              |
|--------------|-----------------|
| Model        | Nominal voltage |
|              | M = 750 Vac     |

MC = 600VacMLCP = 480Vac



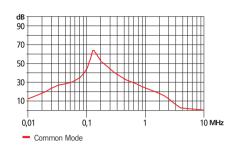
#### **TECHNICAL SPECIFICATIONS**

| Nominal voltage                        | See Electrical Characteristics |
|----------------------------------------|--------------------------------|
| Frequency                              | 50 – 60 Hz                     |
| Rated current                          | Unlimited                      |
| Potential test voltage phase to phase  | 2400 Vdc (2 sec.)              |
| Potential test voltage phase to ground | 3200 Vdc (2 sec.)              |
| Leakage current normal conditions      | < 25 mA *                      |
| Leakage current worst conditions       | < 70 mA                        |
| IP Protection                          | IP20                           |
| Climatic class                         | -40 / +85° C                   |
| MTBF at 40°C                           | 250.000 Hrs                    |

\* Voltage 230 Vac phase to ground 50 Hz /  $40^{\circ}$ C



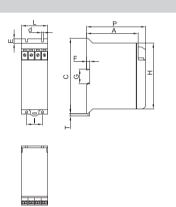


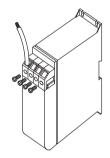

Three Phase Parallel Filter

#### **ELECTRICAL CHARACTERISTICS**

| CO | N | NE | СТ | 10 | NS |
|----|---|----|----|----|----|
|----|---|----|----|----|----|

|                 |                                |                                |                      |                         | LINE                       |                                  | PE             |
|-----------------|--------------------------------|--------------------------------|----------------------|-------------------------|----------------------------|----------------------------------|----------------|
| Model           | Nominal<br>Voltage<br>AC (Vac) | Nominal<br>Voltage<br>DC (Vdc) | Power<br>Loss<br>(W) | Solid<br>Cable<br>(mm²) | Stranded<br>Cable<br>(mm²) | Terminal<br>Block Torque<br>(Nm) | Torque<br>(Nm) |
| FIN730.001.M    | 750                            | 1200                           | 10                   | 1 - 4                   | 1 - 4                      | 1.8                              | 1.8            |
| FIN730.002.MC   | 600                            | 1000                           | 10                   | 1 - 4                   | 1 - 4                      | 1.8                              | 1.8            |
| FIN730.001.MLCP | 480                            | 800                            | 10                   | 1 - 4                   | 1 - 4                      | 1.8                              | 1.8            |


#### TYPICAL ATTENUATION




#### **MECHANICAL DIMENSIONS mm**

| Model           | L  | d   | E  | I  | Р   | A   | C   | T | G    | F | H   | Weight<br>Kg. | Case |  |
|-----------------|----|-----|----|----|-----|-----|-----|---|------|---|-----|---------------|------|--|
| FIN730.001.M    | 59 | 4.5 | 10 | 35 | 130 | 112 | 166 | 4 | 37.5 | 7 | 146 | 1.15          | 1    |  |
| FIN730.002.MC   | 59 | 4.5 | 10 | 35 | 130 | 112 | 166 | 4 | 37.5 | 7 | 146 | 1.15          | 1    |  |
| FIN730.001.MLCP | 59 | 4.5 | 10 | 35 | 130 | 112 | 166 | 4 | 37.5 | 7 | 146 | 1.15          | 1    |  |

CASE 1









RoHS

CE



# EMI/RFI Parallel filter with excellent attenuation in low frequency range



FIN740.068.M

#### FEATURES

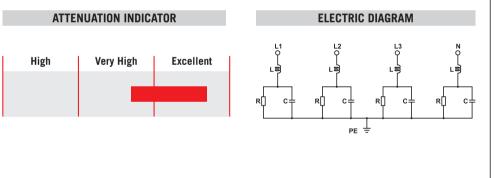
- Independent from nominal current
- Low leakage current
- DIN rail or panel mounting
- Excellent attenuation in low frequency range

#### MARKETS

- CNC machinery
- Recharging stations
- Multiple drive applications
- Renewable energy

**APPROVALS:** 

E215863


#### BENEFITS

- 5 Year warranty
- High differential and common mode attenuation
- Compact design
- 3-phase plus neutral application

**CTUS** UL1283 CSA C22.2

#### **ORDERING CODE**

| FIN740 | .068 | .M                 |
|--------|------|--------------------|
| Model  |      | Connection         |
|        |      | M = Terminal block |



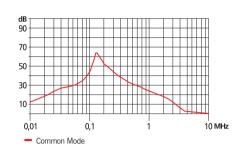
#### **TECHNICAL SPECIFICATIONS**

| Nominal voltage                        | 0 / 600 Vac       |
|----------------------------------------|-------------------|
| Frequency                              | 50 – 60 Hz        |
| Rated current                          | Unlimited         |
| Potential test voltage phase to phase  | 2200 Vdc (2 sec.) |
| Potential test voltage phase to ground | 2900 Vdc (2 sec.) |
| Leakage current normal conditions      | <20 mA*           |
| Leakage current worst conditions       | <60 mA            |
| IP Protection                          | IP20              |
| Climatic class                         | -40 / +85° C      |
| MTBF at 40°C                           | 250.000 Hrs       |

\* Voltage 230 Vac phase to ground 50 Hz /  $40^{\circ}$ C



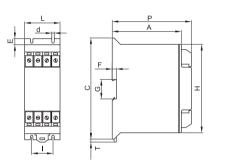


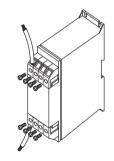

Three Phase + Neutral Parallel Filter

### **ELECTRICAL CHARACTERISTICS**

|              |                                |                                |                      |                         | LINE                       |                                  | PE             |
|--------------|--------------------------------|--------------------------------|----------------------|-------------------------|----------------------------|----------------------------------|----------------|
| Model        | Nominal<br>Voltage<br>AC (Vac) | Nominal<br>Voltage<br>DC (Vdc) | Power<br>Loss<br>(W) | Solid<br>Cable<br>(mm²) | Stranded<br>Cable<br>(mm²) | Terminal<br>Block Torque<br>(Nm) | Torque<br>(Nm) |
| FIN740.068.M | 480                            | 800                            | 10                   | 1 - 4                   | 1 - 4                      | 1.8                              | 1.8            |

CONNECTIONS


#### **TYPICAL ATTENUATION**




#### **MECHANICAL DIMENSIONS mm**

| Model        | L  | d   | E  | I. | Р   | A   | C   | т | G    | F | H   | Weight<br>Kg. | Case |
|--------------|----|-----|----|----|-----|-----|-----|---|------|---|-----|---------------|------|
| FIN740.068.M | 59 | 4.5 | 10 | 35 | 130 | 112 | 166 | 4 | 37.5 | 7 | 146 | 1.15          | 1    |

CASE 1





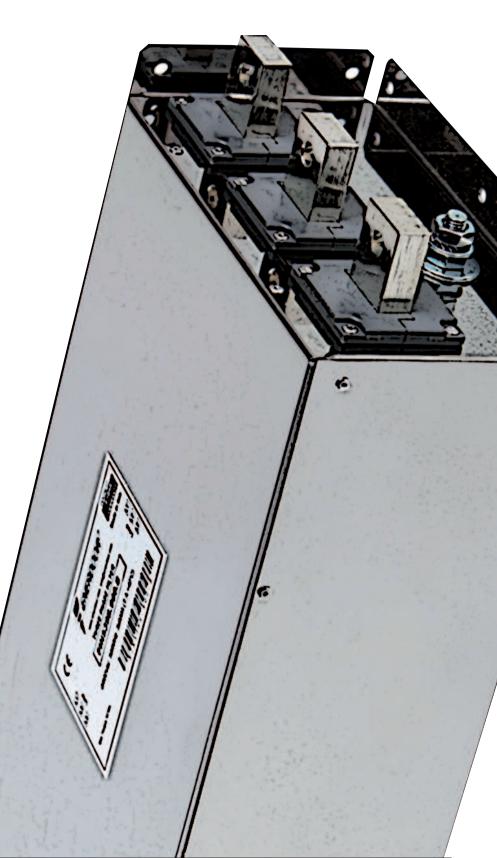




|                              |             |                   |         | COI             | INECT  | ORS   |                      |                | FEAT                    | URES                      |                 |                          |               | APP        | LICAT            | IONS       |         |                |
|------------------------------|-------------|-------------------|---------|-----------------|--------|-------|----------------------|----------------|-------------------------|---------------------------|-----------------|--------------------------|---------------|------------|------------------|------------|---------|----------------|
| Filter<br>Selection<br>Guide | Description | Current Range (A) | Voltage | Terminal Blocks | Screws | s Bar | Regenerative Systems | DIN Rail Mount | Long Cable Applications | Low Frequency Attenuation | Book Case Style | Very Low Leakage Current | Machine Tools | Automation | Renewable Energy | IT Network | Medical | Approval       |
| Three Phase                  | De          | Cu                | Vo      | Ter             | Scr    | Bus I | Reg                  | DID            | Lor                     | Low                       | Bod             | Ver                      | Ma            | Aut        | Rer              | Ē          | Me      | App            |
| FIN1351                      | 3-phase     | 6-16              | 0-480   | ×               |        |       |                      | ×              |                         |                           |                 | ×                        |               | ×          |                  |            | x       |                |
| FIN538                       | 3-phase     | 5-30              | 0-480   | ×               |        |       |                      | ×              |                         |                           |                 |                          |               | ×          |                  |            |         |                |
| FIN538S                      | 3-phase     | 7-180             | 0-600   | ×               | ×      | ×     |                      |                | ×                       |                           |                 |                          |               | ×          | ×                |            |         | c <b>W</b> us  |
| FIN538S1                     | 3-phase     | 7-3000            | 0-600   | ×               | ×      | ×     | ×                    |                | ×                       |                           | ×               |                          | ×             | ×          | ×                |            |         | c <b>W</b> us  |
| FIN539S                      | 3-phase     | 400-2500          | 0-600   |                 |        | ×     | ×                    |                | ×                       |                           | ×               |                          |               |            |                  |            |         |                |
| FIN1200                      | 3-phase     | 5-3000            | 0-480   |                 | ×      | ×     |                      |                |                         |                           |                 | ×                        |               | ×          |                  |            | x       | c <b>RL</b> us |
| FIN1200HV                    | 3-phase     | 5-3000            | 0-600   |                 | ×      | ×     |                      |                |                         |                           |                 | ×                        |               |            |                  |            | x       | c <b>W</b> us  |
| FIN1500                      | 3-phase     | 5-3000            | 0-480   |                 | ×      | ×     | ×                    |                | ×                       | ×                         |                 |                          | ×             |            | ×                |            |         | c <b>FN</b> us |
| FIN1500HV                    | 3-phase     | 5-3000            | 0-600   |                 | ×      | ×     | ×                    |                | ×                       | ×                         |                 |                          | ×             |            | ×                |            |         | c <b>RL</b> us |
| FIN1600                      | 3-phase     | 7-200             | 0-480   | ×               |        |       |                      |                | ×                       |                           | ×               |                          |               |            |                  |            |         |                |
| FIN1700                      | 3-phase     | 6-200             | 0-600   | ×               |        |       |                      |                |                         |                           | ×               | ×                        |               | ×          |                  |            | x       | c <b>RL</b> us |
| FIN1700G                     | 3-phase     | 6-200             | 0-600   | ×               |        |       |                      |                | ×                       |                           | ×               | ×                        |               | ×          |                  |            | x       | c <b>RL</b> us |
| FIN1700E                     | 3-phase     | 7-230             | 0-500   | ×               |        |       |                      |                |                         |                           | ×               | ×                        |               | ×          |                  |            | x       | c <b>RL</b> us |
| FIN1700EG                    | 3-phase     | 7-230             | 0-500   | ×               |        |       |                      |                |                         |                           | ×               | ×                        |               | ×          |                  |            | x       | c <b>W</b> us  |
| FIN1700IT                    | 3-phase     | 6-200             | 0-600   | ×               | ×      | ×     |                      |                |                         |                           | ×               |                          |               |            |                  | ×          |         |                |
| FIN1900                      | 3-phase     | 6-200             | 0-600   | ×               |        |       | ×                    |                |                         |                           | ×               |                          | ×             | ×          | ×                |            |         | c <b>RV</b> us |
| FIN1900G                     | 3-phase     | 6-200             | 0-600   | ×               |        |       | ×                    |                | ×                       |                           | ×               |                          | ×             | ×          | ×                |            |         | c <b>W</b> us  |
| FIN1900E                     | 3-phase     | 6-230             | 0-500   | ×               |        |       |                      |                |                         |                           | ×               |                          | ×             | ×          | ×                |            |         | c <b>FN</b> us |
| FIN1900EG                    | 3-phase     | 6-230             | 0-500   | x               |        |       |                      |                | ×                       |                           | ×               |                          | ×             | ×          | x                |            |         | c <b>AN</b> us |
| FIN1900S                     | 3-phase     | 42-200            | 0-600   | x               |        |       | ×                    |                | ×                       | ×                         | ×               |                          | ×             | ×          | x                |            |         | c <b>AN</b> us |
| FIN3755                      | 3-phase     | 7-280             | 0-480   | x               |        |       |                      |                |                         |                           | ×               |                          |               | ×          |                  |            |         | c <b>RL</b> us |
| FIN7213                      | 3-phase     | 150-3000          | 0-480   |                 |        | ×     | ×                    |                | ×                       | ×                         |                 |                          |               | ×          | ×                |            |         |                |

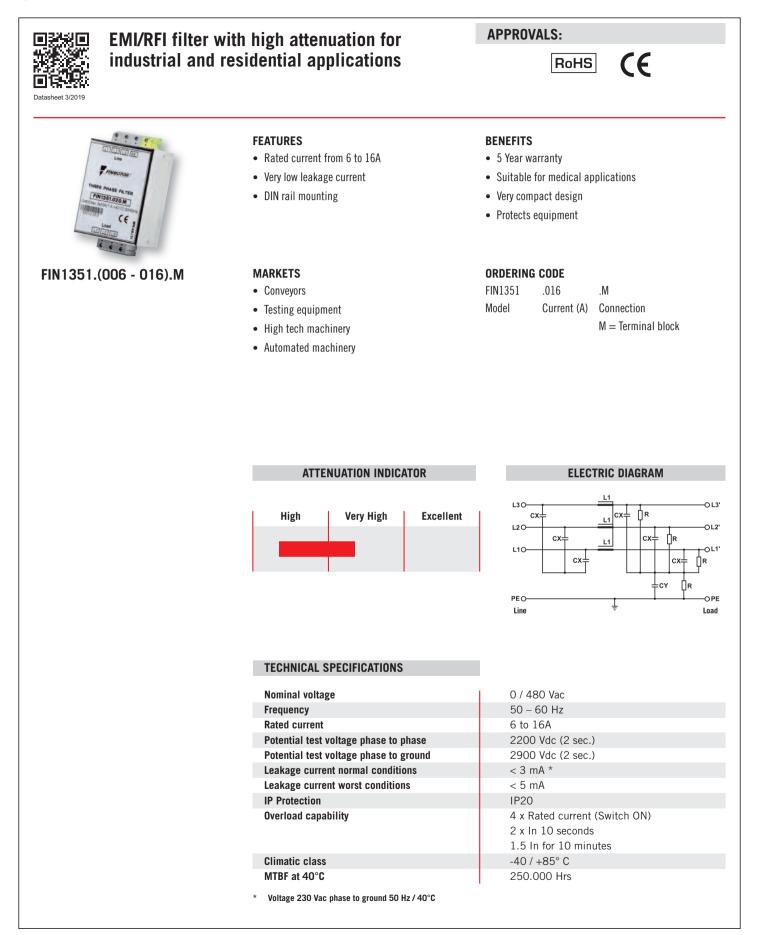


## **Three Phase Filters**


Enerdoor three phase filters provide high attenuation in a compact case with low leakage current and are suitable for a large range of industries. Enerdoor offers solutions in traditional TN and TNS networks and in specific applications such as IT power line configurations.

This line carries CE, UL and CSA approvals and offers a current range from 5 to 3000A with nominal voltage up to 750 Vac.

This series features easy installation and is available with DIN rail mounting, bus bar connectors, safety terminal blocks and finger safe protection. Customized solutions are available to satisfy various application requirements.


#### Three phase applications include:

- Automated machinery
- Packaging machinery
- Variable frequency drives
- Servo drives
- IT networks
- Medical equipment
- CNC machinery
- HVAC systems
- Recharging stations
- Renewable energy
- Uninterruptible power supplies



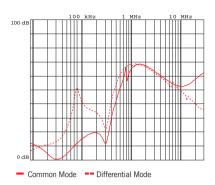








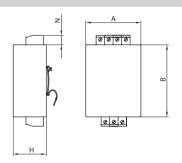


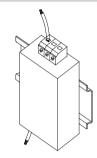

### **ELECTRICAL CHARACTERISTICS**

| FIN1351 | Rated<br>Current<br>40°C | Rated<br>Current<br>50°C | Power Loss<br>(W) |
|---------|--------------------------|--------------------------|-------------------|
| .006.M  | 6                        | 5                        | 6                 |
| .010.M  | 10                       | 8                        | 8                 |
| .016.M  | 16                       | 14                       | 10                |

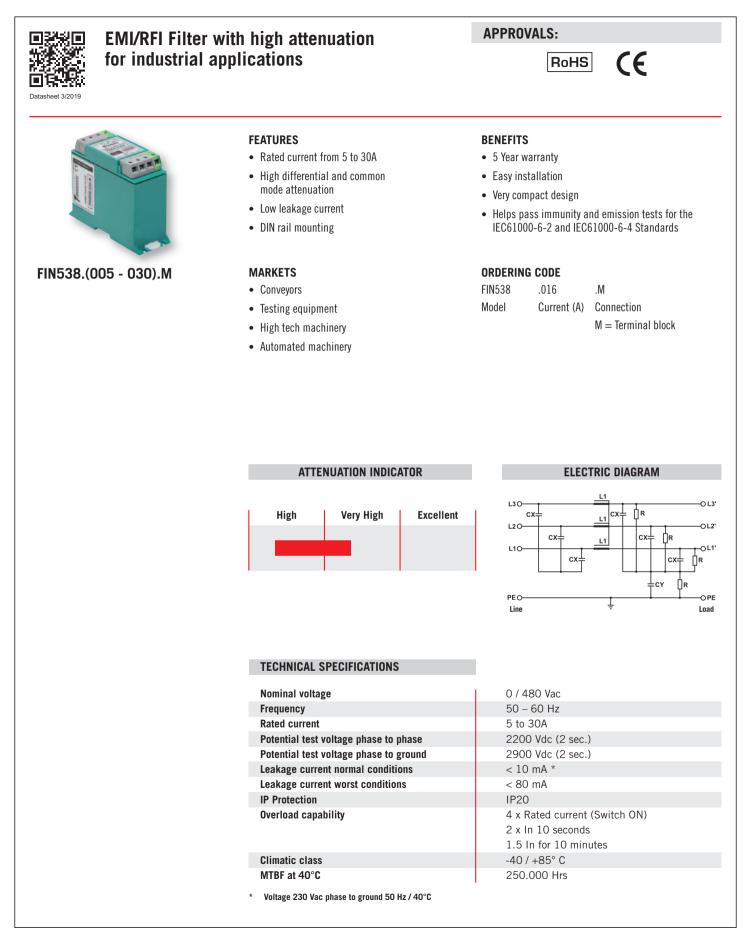
#### CONNECTIONS

|    |                                      | LINE                       |                               |                |  |  |  |  |  |  |  |  |
|----|--------------------------------------|----------------------------|-------------------------------|----------------|--|--|--|--|--|--|--|--|
| SS | Solid<br>Cable<br>(mm <sup>2</sup> ) | Stranded<br>Cable<br>(mm²) | Terminal Block<br>Torque (Nm) | Torque<br>(Nm) |  |  |  |  |  |  |  |  |
|    | 0.2 - 6                              | 0.2 - 4                    | 0.8                           | 0.8            |  |  |  |  |  |  |  |  |
|    | 0.2 - 6                              | 0.2 - 4                    | 0.8                           | 0.8            |  |  |  |  |  |  |  |  |
|    | 0.2 - 6                              | 0.2 - 4                    | 0.8                           | 0.8            |  |  |  |  |  |  |  |  |


#### **TYPICAL ATTENUATION**




#### **MECHANICAL DIMENSIONS mm**


| FIN | N1351 | A  | В  | H  | N  | Weight<br>Kg. | Case |
|-----|-------|----|----|----|----|---------------|------|
|     | 006.M | 65 | 85 | 39 | 11 | 0.32          | 1    |
|     | 010.M | 65 | 85 | 39 | 11 | 0.32          | 1    |
|     | 016.M | 65 | 85 | 39 | 11 | 0.32          | 1    |

#### CASE 1



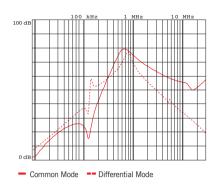








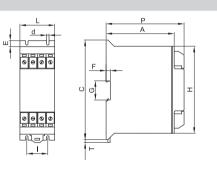


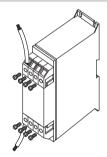

### ELECTRICAL CHARACTERISTICS

| FIN538 | Rated<br>Current<br>40°C | Rated<br>Current<br>50°C | Power Loss<br>(W) |
|--------|--------------------------|--------------------------|-------------------|
| .005.M | 8                        | 6                        | 8                 |
| .010.M | 14                       | 12                       | 10                |
| .016.M | 18                       | 16                       | 12                |
| .025.M | 28                       | 25                       | 15                |
| .030.M | 35                       | 32                       | 23                |

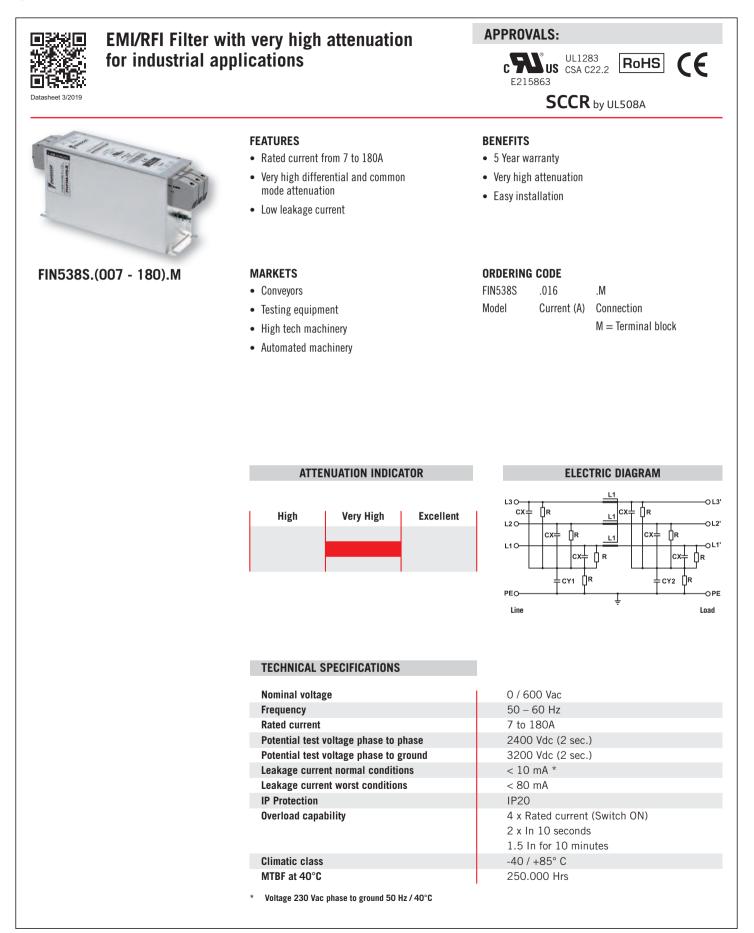
#### CONNECTIONS

|    |                         | LINE                       |                | PE  |
|----|-------------------------|----------------------------|----------------|-----|
| SS | Solid<br>Cable<br>(mm²) | Stranded<br>Cable<br>(mm²) | Torque<br>(Nm) |     |
|    | 1 - 4                   | 1 - 4                      | 1.8            | 1.8 |
|    | 1 - 4                   | 1 - 4                      | 1.8            | 1.8 |
|    | 1 - 4                   | 1 - 4                      | 1.8            | 1.8 |
|    | 1 - 4                   | 1 - 4                      | 1.8            | 1.8 |
|    | 1 - 4                   | 1 - 4                      | 1.8            | 1.8 |


#### **TYPICAL ATTENUATION**




#### **MECHANICAL DIMENSIONS mm**


| FIN538 | A   | E  | C   | Р   | F | H   | I. | L  | G    | d   | T | Weight<br>Kg. | Case |
|--------|-----|----|-----|-----|---|-----|----|----|------|-----|---|---------------|------|
| .005.M | 112 | 10 | 166 | 130 | 7 | 146 | 35 | 59 | 37.5 | 4.5 | 4 | 1.15          | 1    |
| .010.M | 112 | 10 | 166 | 130 | 7 | 146 | 35 | 59 | 37.5 | 4.5 | 4 | 1.15          | 1    |
| .016.M | 112 | 10 | 166 | 130 | 7 | 146 | 35 | 59 | 37.5 | 4.5 | 4 | 1.15          | 1    |
| .025.M | 112 | 10 | 166 | 130 | 7 | 146 | 35 | 59 | 37.5 | 4.5 | 4 | 1.15          | 1    |
| .030.M | 112 | 10 | 166 | 130 | 7 | 146 | 35 | 59 | 37.5 | 4.5 | 4 | 1.15          | 1    |

CASE 1



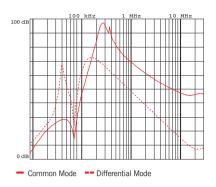








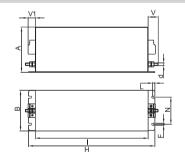


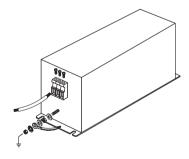

CONNECTIONS

#### **ELECTRICAL CHARACTERISTICS**

| FIN538S | Rated<br>Current<br>40°C | Rated<br>Current<br>50°C | Power Loss<br>(W) |
|---------|--------------------------|--------------------------|-------------------|
| .007.M  | 8                        | 7                        | 3                 |
| .016.M  | 18                       | 16                       | 4                 |
| .030.M  | 34                       | 30                       | 10                |
| .042.M  | 47                       | 42                       | 18                |
| .055.M  | 60                       | 55                       | 23                |
| .075.M  | 83                       | 75                       | 37                |
| .100.M  | 110                      | 100                      | 52                |
| .130.M  | 142                      | 130                      | 65                |
| .180.M  | 200                      | 180                      | 77                |

|                         | LINE                       |                            | P         | Έ              |
|-------------------------|----------------------------|----------------------------|-----------|----------------|
| Solid<br>Cable<br>(mm²) | Stranded<br>Cable<br>(mm²) | Terminal<br>Torque<br>(Nm) | d<br>(mm) | Torque<br>(Nm) |
| 0.2 - 10                | 0.2 - 6                    | 1.2                        | M6        | 1.2            |
| 0.2 - 10                | 0.2 - 6                    | 1.2                        | M6        | 1.2            |
| 0.2 - 10                | 0.2 - 6                    | 1.2                        | M6        | 1.2            |
| 0.5 - 16                | 0.5 - 10                   | 1.8                        | M6        | 1.8            |
| 0.5 - 16                | 0.5 - 10                   | 1.8                        | M6        | 1.8            |
| 4 -25                   | 6 - 35                     | 4.5                        | M6        | 4.5            |
| 10 - 50                 | 10 - 50                    | 4                          | M10       | 4              |
| 10 - 50                 | 10 - 50                    | 4                          | M10       | 4              |
| 35 - 95                 | 35 - 95                    | 20                         | M10       | 20             |


#### **TYPICAL ATTENUATION**




#### **MECHANICAL DIMENSIONS mm**

| FIN538S | A   | В   | V  | V1 | F   | H   | I.  | L   | N   | d   | Weight<br>Kg. | Case |
|---------|-----|-----|----|----|-----|-----|-----|-----|-----|-----|---------------|------|
| .007.M  | 100 | 90  | 22 | 16 | 5.4 | 250 | 220 | 7.5 | 60  | M6  | 1.3           | 1    |
| .016.M  | 100 | 90  | 22 | 16 | 5.4 | 250 | 220 | 7.5 | 60  | M6  | 1.3           | 1    |
| .030.M  | 100 | 90  | 22 | 16 | 5.4 | 250 | 220 | 7.5 | 60  | M6  | 1.3           | 1    |
| .042.M  | 100 | 90  | 22 | 35 | 5.4 | 250 | 220 | 7.5 | 60  | M6  | 1.5           | 1    |
| .055.M  | 100 | 90  | 22 | 35 | 5.4 | 250 | 220 | 7.5 | 60  | M6  | 1.7           | 1    |
| .075.M  | 135 | 85  | 22 | 39 | 6.5 | 270 | 240 | 7.5 | 60  | M6  | 2.2           | 1    |
| .100.M  | 155 | 90  | 24 | 43 | 6.5 | 270 | 240 | 7.5 | 60  | M10 | 3.2           | 1    |
| .130.M  | 155 | 90  | 24 | 43 | 6.5 | 270 | 240 | 7.5 | 60  | M10 | 3.2           | 1    |
| .180.M  | 170 | 125 | 26 | 51 | 6.5 | 380 | 350 | 7.5 | 102 | M10 | 5.1           | 1    |

#### CASE 1



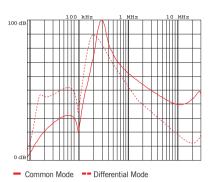




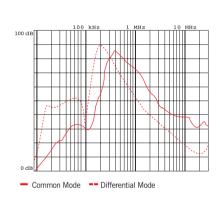


| 回影法回 EMI/RFI Filter w           | ith excellent                                                                                                                                                                                                                                                                                  | APPROVALS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| attenuation for<br>applications |                                                                                                                                                                                                                                                                                                | UL1283<br>CSA C22.2 RoHS CC<br>SCCR by UL508A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Call and the                    | FEATURES <ul> <li>Rated current from 7 to 3000A</li> </ul>                                                                                                                                                                                                                                     | <b>BENEFITS</b> <ul> <li>5 Year warranty</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                 | • Excellent differential and common mode attenuation                                                                                                                                                                                                                                           | <ul><li>Various connections available</li><li>Finger safe protection available</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                 | <ul><li>Low leakage current</li><li>Terminal blocks up to 180A</li></ul>                                                                                                                                                                                                                       | • Vertical bus bar available                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| FIN538S1.(007 – 180).M          | MARKETS <ul> <li>Electrical equipment</li> </ul>                                                                                                                                                                                                                                               | ORDERING CODE<br>FIN538S1 .007 .M<br>Model Current (A) Connection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                 | <ul> <li>Machine tools</li> <li>Industrial automation</li> <li>Frequency drives and servo drives</li> <li>Regenerative systems</li> </ul>                                                                                                                                                      | $Model \qquad Current (A) \qquad Connection M = Terminal block V = Screw BC = Bus bar$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                 | Renewable energy                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| FIN538S1.(250 – 280).V          | ATTENUATION INDICATOR                                                                                                                                                                                                                                                                          | ELECTRIC DIAGRAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                 |                                                                                                                                                                                                                                                                                                | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                 | High Very High Excellent                                                                                                                                                                                                                                                                       | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                 |                                                                                                                                                                                                                                                                                                | $\begin{array}{c c} cx \doteq 0 \\ cx = 0 \\ cx $ |
|                                 | High Very High Excellent           High         Very High         Excellent           TECHNICAL SPECIFICATIONS         TECHNICAL SPECIFICATIONS         TECHNICAL SPECIFICATIONS                                                                                                               | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                 | TECHNICAL SPECIFICATIONS Nominal voltage                                                                                                                                                                                                                                                       | $C_{x} = 0 R$ $L_{1} = 0 L_{2}$ $C_{x} = 0 R$ $L_{1} = 0 L_{2}$ $C_{x} = 0 R$ $L_{1} = 0 L_{2}$ $C_{x} = 0 R$ $C_$                                                                                                                                                                                                                                                    |
| FIN538S1.(280 – 1750).BC        | TECHNICAL SPECIFICATIONS Nominal voltage Frequency                                                                                                                                                                                                                                             | CX = 0R $L20$ $CX = 0R$ $L10$ $CX = 0R$ $CX$                                                                                                                                                                                                                                                      |
| FIN538S1.(280 – 1750).BC        | TECHNICAL SPECIFICATIONS Nominal voltage Frequency Rated current                                                                                                                                                                                                                               | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| FIN538S1.(280 – 1750).BC        | TECHNICAL SPECIFICATIONS Nominal voltage Frequency Rated current Potential test voltage phase to phase                                                                                                                                                                                         | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| FIN538S1.(280 – 1750).BC        | TECHNICAL SPECIFICATIONS Nominal voltage Frequency Rated current Potential test voltage phase to phase Potential test voltage phase to ground                                                                                                                                                  | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| FIN538S1.(280 – 1750).BC        | TECHNICAL SPECIFICATIONS Nominal voltage Frequency Rated current Potential test voltage phase to phase                                                                                                                                                                                         | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| FIN538S1.(280 – 1750).BC        | TECHNICAL SPECIFICATIONS Nominal voltage Frequency Rated current Potential test voltage phase to phase Potential test voltage phase to ground Leakage current normal conditions                                                                                                                | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| FIN538S1.(280 – 1750).BC        | TECHNICAL SPECIFICATIONS Nominal voltage Frequency Rated current Potential test voltage phase to phase Potential test voltage phase to ground Leakage current normal conditions Leakage current worst conditions                                                                               | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| FIN538S1.(280 – 1750).BC        | TECHNICAL SPECIFICATIONS         Nominal voltage         Frequency         Rated current         Potential test voltage phase to phase         Potential test voltage phase to ground         Leakage current normal conditions         Leakage current worst conditions         IP Protection | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| FIN538S1.(280 – 1750).BC        | TECHNICAL SPECIFICATIONS Nominal voltage Frequency Rated current Potential test voltage phase to phase Potential test voltage phase to ground Leakage current normal conditions Leakage current worst conditions                                                                               | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| FIN538S1.(280 – 1750).BC        | TECHNICAL SPECIFICATIONS         Nominal voltage         Frequency         Rated current         Potential test voltage phase to phase         Potential test voltage phase to ground         Leakage current normal conditions         Leakage current worst conditions         IP Protection | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| FIN538S1.(280 – 1750).BC        | TECHNICAL SPECIFICATIONS         Nominal voltage         Frequency         Rated current         Potential test voltage phase to phase         Potential test voltage phase to ground         Leakage current normal conditions         Leakage current worst conditions         IP Protection | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| FIN538S1.(280 – 1750).BC        | TECHNICAL SPECIFICATIONS         Nominal voltage         Frequency         Rated current         Potential test voltage phase to phase         Potential test voltage phase to ground         Leakage current normal conditions         Leakage current worst conditions         IP Protection | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |






### **ELECTRICAL CHARACTERISTICS**


| FIN538S1 | Rated<br>Current<br>40°C | Rated<br>Current<br>50°C | Power Loss<br>(W) |
|----------|--------------------------|--------------------------|-------------------|
| .007.M   | 8                        | 7                        | 3                 |
| .016.M   | 18                       | 16                       | 4                 |
| .030.M   | 34                       | 30                       | 10                |
| .042.M   | 47                       | 42                       | 18                |
| .055.M   | 60                       | 55                       | 23                |
| .075.M   | 83                       | 75                       | 37                |
| .100.M   | 110                      | 100                      | 52                |
| .130.M   | 142                      | 130                      | 65                |
| .180.M   | 200                      | 180                      | 77                |

| CONNE                   | CTIONS                     |                            |           |                |
|-------------------------|----------------------------|----------------------------|-----------|----------------|
|                         | LINE                       |                            | P         | Έ              |
| Solid<br>Cable<br>(mm²) | Stranded<br>Cable<br>(mm²) | Terminal<br>Torque<br>(Nm) | d<br>(mm) | Torque<br>(Nm) |
| 0.2-10                  | 0.2-6                      | 1.2                        | M10       | 6              |
| 0.2-10                  | 0.2-6                      | 1.2                        | M10       | 6              |
| 0.2-10                  | 0.2-6                      | 1.2                        | M10       | 6              |
| 0.5-16                  | 0.5-10                     | 1.8                        | M10       | 6              |
| 0.5-16                  | 0.5-10                     | 1.8                        | M10       | 6              |
| 6-35                    | 4-25                       | 4.5                        | M10       | 6              |
| 10-50                   | 10-50                      | 4.0                        | M10       | 6              |
| 10-50                   | 10-50                      | 4.0                        | M10       | 6              |
| 35-95                   | 35-95                      | 20.0                       | M10       | 6              |

#### **TYPICAL ATTENUATION**



Typical attenuation 7A - 400A

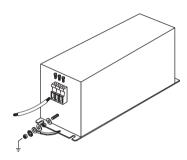


Typical attenuation 500A - 3000A

|          |                          |                          |                   | LI        | NE             |             | PE             |
|----------|--------------------------|--------------------------|-------------------|-----------|----------------|-------------|----------------|
| FIN538S1 | Rated<br>Current<br>40°C | Rated<br>Current<br>50°C | Power Loss<br>(W) | d<br>(mm) | Torque<br>(Nm) | d 1<br>(mm) | Torque<br>(Nm) |
| .250.V   | 272                      | 250                      | 80                | M12       | 20             | M10         | 18             |
| .280.V   | 290                      | 280                      | 80                | M12       | 20             | M10         | 18             |
| .280.BC  | 297                      | 280                      | 80                | M8        | 14             | M10         | 18             |
| .320.BC  | 330                      | 320                      | 80                | M8        | 14             | M10         | 18             |
| .360.BC  | 390                      | 360                      | 105               | M8        | 14             | M10         | 18             |
| .400.BC  | 435                      | 400                      | 110               | M8        | 14             | M10         | 18             |
| .500.BC  | 545                      | 500                      | 102               | M8        | 14             | M10         | 18             |
| .600.BC  | 654                      | 600                      | 108               | M10       | 25             | M10         | 18             |
| .750.BC  | 800                      | 750                      | 96                | M10       | 25             | M10         | 18             |
| .900.BC  | 940                      | 900                      | 80                | M12       | 50             | M12         | 20             |
| .1000.BC | 1050                     | 1000                     | 115               | M12       | 50             | M12         | 20             |
| .1250.BC | 1290                     | 1250                     | 101               | M12       | 50             | M12         | 20             |
| .1500.BC | 1550                     | 1500                     | 120               | M12       | 50             | M12         | 20             |
| .1600.BC | 1650                     | 1600                     | 130               | M12       | 50             | M12         | 20             |
| .1750.BC | 1800                     | 1750                     | 135               | M12       | 50             | M12         | 20             |
| .2000.BC | 2040                     | 2000                     | 138               | M12       | 50             | M12         | 20             |
| .2250.BC | 2290                     | 2250                     | 145               | M12       | 50             | M12         | 20             |
| .2500.BC | 2535                     | 2500                     | 170               | M12       | 50             | M12         | 20             |
| .3000.BC | 3050                     | 3000                     | 180               | M12       | 50             | M12         | 20             |



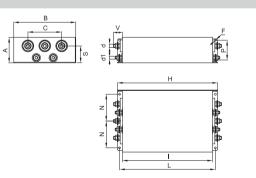


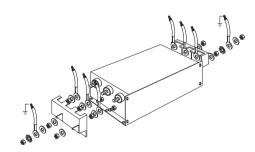


#### **MECHANICAL DIMENSIONS mm**

| FIN538S1 | A   | В   | ۷  | V1 | F   | H   | I.  | L   | N   | d   | Weight<br>Kg. | Case |  |
|----------|-----|-----|----|----|-----|-----|-----|-----|-----|-----|---------------|------|--|
| .007.M   | 100 | 90  | 22 | 16 | 5.4 | 250 | 220 | 7.5 | 60  | M6  | 1.3           | 1    |  |
| .016.M   | 100 | 90  | 22 | 16 | 5.4 | 250 | 220 | 7.5 | 60  | M6  | 1.3           | 1    |  |
| .030.M   | 100 | 90  | 22 | 16 | 5.4 | 250 | 220 | 7.5 | 60  | M6  | 1.3           | 1    |  |
| .042.M   | 100 | 90  | 22 | 35 | 5.4 | 250 | 220 | 7.5 | 60  | M6  | 1.5           | 2    |  |
| .055.M   | 100 | 90  | 22 | 35 | 5.4 | 250 | 220 | 7.5 | 60  | M6  | 1.5           | 2    |  |
| .075.M   | 135 | 85  | 22 | 39 | 6.5 | 270 | 240 | 7.5 | 60  | M6  | 2.2           | 3    |  |
| .100.M   | 155 | 90  | 24 | 43 | 6.5 | 270 | 240 | 7.5 | 65  | M10 | 3.2           | 4    |  |
| .130.M   | 155 | 90  | 24 | 43 | 6.5 | 270 | 240 | 7.5 | 65  | M10 | 3.2           | 4    |  |
| .180.M   | 170 | 125 | 26 | 51 | 6.5 | 380 | 350 | 7.5 | 102 | M10 | 5.5           | 5    |  |

#### CASE 1, 2, 3, 4, 5




#### ASSEMBLY CONNECTION "M"



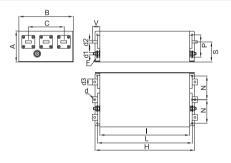

#### **MECHANICAL DIMENSIONS mm**

| FIN538S1 | A  | В   | C   | d   | d1  | ۷  | F   | H   | I.  | L   | N  | Р  | S  | Weight<br>Kg. | Case |
|----------|----|-----|-----|-----|-----|----|-----|-----|-----|-----|----|----|----|---------------|------|
| .250.V   | 90 | 220 | 120 | M12 | M10 | 30 | 6.5 | 356 | 320 | 340 | 95 | 70 | 60 | 9             | 6    |
| .280.V   | 90 | 220 | 120 | M12 | M10 | 30 | 6.5 | 356 | 320 | 340 | 95 | 70 | 60 | 9             | 6    |

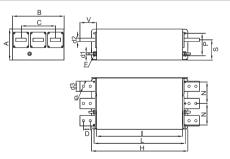
#### CASE 6



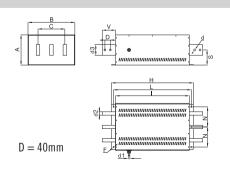




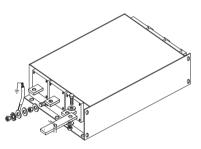




#### **MECHANICAL DIMENSIONS mm**

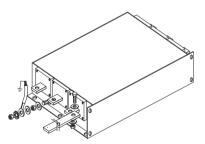
| FIN538S1 | A   | В   | C   | d   | d1  | d2 | d3 | ۷   | F   | H   | I   | L   | N   | Р   | S   | Weight<br>Kg. | Case |
|----------|-----|-----|-----|-----|-----|----|----|-----|-----|-----|-----|-----|-----|-----|-----|---------------|------|
| .280.BC  | 90  | 220 | 120 | M8  | M10 | 6  | 20 | 42  | 6.5 | 356 | 320 | 340 | 95  | 70  | 55  | 9             | 7    |
| .320.BC  | 90  | 220 | 120 | M8  | M10 | 6  | 20 | 42  | 6.5 | 356 | 320 | 340 | 95  | 70  | 55  | 9             | 7    |
| .360.BC  | 130 | 230 | 150 | M8  | M10 | 10 | 25 | 42  | 6.5 | 420 | 380 | 400 | 100 | 100 | 85  | 13.5          | 8    |
| .400.BC  | 130 | 230 | 150 | M8  | M10 | 10 | 25 | 42  | 6.5 | 420 | 380 | 400 | 100 | 100 | 85  | 13.5          | 8    |
| .500.BC  | 130 | 230 | 150 | M8  | M10 | 10 | 25 | 42  | 6.5 | 420 | 380 | 400 | 100 | 100 | 85  | 13.5          | 8    |
| .600.BC  | 130 | 230 | 150 | M12 | M10 | 15 | 30 | 48  | 6.5 | 510 | 450 | 480 | 100 | 100 | 85  | 19            | 9    |
| .750.BC  | 130 | 230 | 150 | M12 | M10 | 15 | 30 | 48  | 6.5 | 510 | 450 | 480 | 100 | 100 | 85  | 19            | 9    |
| .900.BC  | 160 | 250 | 140 | M12 | M12 | 20 | 40 | 94  | 8.5 | 510 | 450 | 480 | 100 | 110 | 110 | 27            | 10   |
| .1000.BC | 160 | 250 | 140 | M12 | M12 | 20 | 40 | 94  | 8.5 | 510 | 450 | 480 | 100 | 110 | 110 | 27            | 10   |
| .1250.BC | 160 | 250 | 140 | M12 | M12 | 20 | 40 | 94  | 8.5 | 510 | 450 | 480 | 100 | 110 | 110 | 27            | 10   |
| .1500.BC | 180 | 300 | 200 | M12 | M12 | 20 | 60 | 97  | 8.5 | 560 | 500 | 530 | 125 | 130 | 117 | 30            | 11   |
| .1600.BC | 180 | 300 | 200 | M12 | M12 | 20 | 60 | 97  | 8.5 | 560 | 500 | 530 | 125 | 130 | 117 | 30            | 11   |
| .1750.BC | 180 | 300 | 200 | M12 | M12 | 20 | 60 | 97  | 8.5 | 560 | 500 | 530 | 125 | 130 | 117 | 30            | 11   |
| .2000.BC | 225 | 350 | 200 | M12 | M12 | 25 | 80 | 100 | 8.5 | 610 | 550 | 580 | 150 | -   | 113 | 68            | 12   |
| .2250.BC | 225 | 350 | 200 | M12 | M12 | 25 | 80 | 100 | 8.5 | 610 | 550 | 580 | 150 | -   | 113 | 68            | 12   |
| .2500.BC | 225 | 350 | 200 | M12 | M12 | 25 | 80 | 100 | 8.5 | 610 | 550 | 580 | 150 | -   | 113 | 68            | 12   |
| .3000.BC | 225 | 350 | 200 | M12 | M12 | 25 | 80 | 100 | 8.5 | 610 | 550 | 580 | 150 | -   | 113 | 68            | 12   |

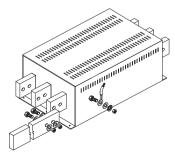

### CASE 7, 8, 9




### CASE 10, 11



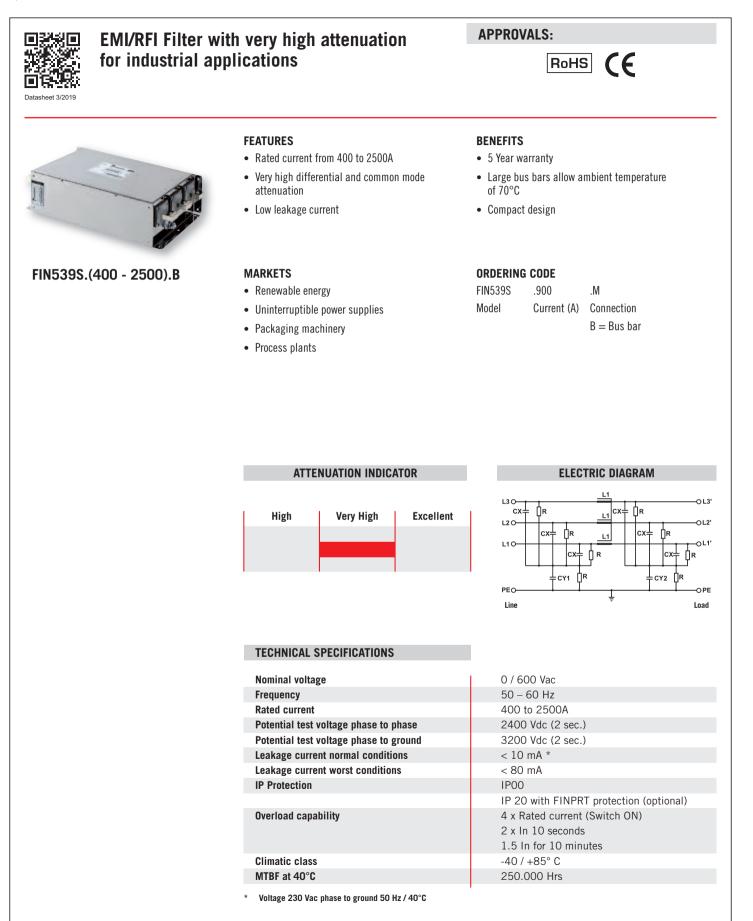

### CASE 12




#### ASSEMBLY CONNECTION "BC"



### ASSEMBLY CONNECTION "BC"









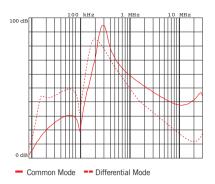

### FIN539S







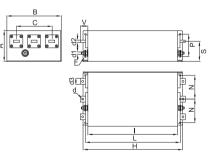
### FIN539S

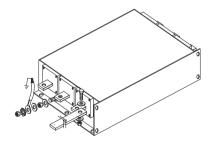

#### ELECTRICAL CHARACTERISTICS

|         |                          |                          |                   | L         | INE          |
|---------|--------------------------|--------------------------|-------------------|-----------|--------------|
| FIN539S | Rated<br>Current<br>40°C | Rated<br>Current<br>50°C | Power Loss<br>(W) | d<br>(mm) | Torqı<br>(Nm |
| .400.B  | 420                      | 400                      | 92                | M8        | 14           |
| .500.B  | 525                      | 500                      | 102               | M8        | 14           |
| .600.B  | 630                      | 600                      | 82                | M8        | 14           |
| .750.B  | 790                      | 750                      | 95                | M10       | 25           |
| .900.B  | 945                      | 900                      | 105               | M10       | 25           |
| .1000.B | 1050                     | 1000                     | 92                | M12       | 50           |
| .1250.B | 1300                     | 1300                     | 98                | M12       | 50           |
| .1500.B | 1550                     | 1500                     | 108               | M12       | 50           |
| .1750.B | 1800                     | 1750                     | 105               | M12       | 50           |
| .2000.B | 2100                     | 2000                     | 92                | M12       | 50           |
| .2250.B | 2350                     | 2250                     | 98                | M12       | 50           |
| .2500.B | 2650                     | 2500                     | 108               | M12       | 50           |

#### CONNECTIONS

|                   | L         | INE            |             | PE             |
|-------------------|-----------|----------------|-------------|----------------|
| Power Loss<br>(W) | d<br>(mm) | Torque<br>(Nm) | d 1<br>(mm) | Torque<br>(Nm) |
| 92                | M8        | 14             | M10         | 18             |
| 102               | M8        | 14             | M10         | 18             |
| 82                | M8        | 14             | M10         | 18             |
| 95                | M10       | 25             | M10         | 18             |
| 105               | M10       | 25             | M10         | 18             |
| 92                | M12       | 50             | M12         | 20             |
| 98                | M12       | 50             | M12         | 20             |
| 108               | M12       | 50             | M12         | 20             |
| 105               | M12       | 50             | M12         | 20             |
| 92                | M12       | 50             | M12         | 20             |
| 98                | M12       | 50             | M12         | 20             |
| 108               | M12       | 50             | M12         | 20             |


#### **TYPICAL ATTENUATION**




#### **MECHANICAL DIMENSIONS mm**

| FIN539S | A   | В   | C   | d   | d1  | d 2 | d 3 | ۷  | F   | H   | I   | L   | N   | Р   | S   | Weight<br>Kg. | Case |
|---------|-----|-----|-----|-----|-----|-----|-----|----|-----|-----|-----|-----|-----|-----|-----|---------------|------|
| .400.B  | 130 | 230 | 150 | M8  | M10 | 10  | 25  | 42 | 6.5 | 420 | 380 | 400 | 100 | 100 | 85  | 13.5          | 1    |
| .500.B  | 130 | 230 | 150 | M8  | M10 | 10  | 25  | 42 | 6.5 | 420 | 380 | 400 | 100 | 100 | 85  | 13.5          | 1    |
| .600.B  | 130 | 230 | 150 | M8  | M10 | 15  | 30  | 48 | 6.5 | 510 | 450 | 480 | 100 | 100 | 85  | 19            | 2    |
| .750.B  | 130 | 230 | 150 | M10 | M10 | 15  | 30  | 48 | 6.5 | 510 | 450 | 480 | 100 | 100 | 85  | 19            | 2    |
| .900.B  | 130 | 230 | 150 | M10 | M10 | 15  | 30  | 48 | 6.5 | 510 | 450 | 480 | 100 | 100 | 85  | 19            | 2    |
| .1000.B | 160 | 250 | 140 | M12 | M12 | 20  | 40  | 94 | 8.5 | 510 | 450 | 480 | 100 | 110 | 110 | 27            | 3    |
| .1250.B | 160 | 250 | 140 | M12 | M12 | 20  | 40  | 94 | 8.5 | 510 | 450 | 480 | 100 | 110 | 110 | 27            | 3    |
| .1500.B | 160 | 250 | 140 | M12 | M12 | 20  | 40  | 94 | 8.5 | 510 | 450 | 480 | 100 | 110 | 110 | 27            | 3    |
| .1750.B | 180 | 350 | 200 | M12 | M12 | 20  | 60  | 97 | 8.5 | 610 | 550 | 580 | 150 | 130 | 117 | 32            | 4    |
| .2000.B | 180 | 350 | 200 | M12 | M12 | 20  | 60  | 97 | 8.5 | 610 | 550 | 580 | 150 | 130 | 117 | 32            | 4    |
| .2250.B | 180 | 350 | 200 | M12 | M12 | 20  | 60  | 97 | 8.5 | 610 | 550 | 580 | 150 | 130 | 117 | 32            | 4    |
| .2500.B | 180 | 350 | 200 | M12 | M12 | 20  | 60  | 97 | 8.5 | 610 | 550 | 580 | 150 | 130 | 117 | 32            | 4    |

CASE 1, 2, 3, 4





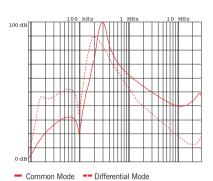


| 回誤影回 EMI/RFI Filter w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ith excellent attenuation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | APPROVALS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| for industrial ap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | plications                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | UL1283<br>CSA C22.2 RoHS CE<br>SCCR by UL508A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FEATURES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | BENEFITS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| French and the second s | <ul> <li>Rated current from 5 to 3000A</li> <li>Excellent differential and common mode attenuation</li> <li>Very low leakage current</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <ul> <li>5 Year warranty</li> <li>Various connections available</li> <li>Finger safe protection available</li> <li>Vertical bus bar available</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| FIN1200.(005 - 280).V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MARKETS<br>• Electrical equipment<br>• Semiconductor equipment<br>• Industrial automation<br>• Variable frequency drives / servo drives<br>• MRI - Medical equipment<br>• Renewable energy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ORDERING CODE<br>FIN1200(HV) .100 .V<br>Model Current (A) Connection<br>HV = 600Vac V = Screw<br>BC = Bus bar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| FIN1200.(280 - 1750).BC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ATTENUATION INDICATOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ELECTRIC DIAGRAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| FIN1200.(280 - 1750).BC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ATTENUATION INDICATOR<br>High Very High Excellent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| FIN1200.(280 - 1750).BC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | High Very High Excellent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $L_{10} \xrightarrow{L_1} \xrightarrow{L_2} OL_3$ $L_{20} \xrightarrow{CX} \square R \xrightarrow{L_1} CY \xrightarrow{L_2} CX \xrightarrow{L_2} OL_2$ $L_{10} \xrightarrow{CX} \square R \xrightarrow{L_1} CY \xrightarrow{L_2} CX \xrightarrow{L_2} OL_3$ $L_{10} \xrightarrow{CX} \square R \xrightarrow{L_1} CY \xrightarrow{L_2} CX \xrightarrow{L_2} OL_1$ $PEO \xrightarrow{L} \square R \xrightarrow{L_1} CY \xrightarrow{L_2} CX \xrightarrow{L_2} OL_1$ $PEO \xrightarrow{L} \square R \xrightarrow{L_1} CY \xrightarrow{L_2} OL_3$                                                                                                                                                                                                                                                                                                                                                                                              |
| FIN1200.(280 - 1750).BC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | High Very High Excellent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| FIN1200.(280 - 1750).BC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | High     Very High     Excellent       TECHNICAL SPECIFICATIONS       Nominal voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | High     Very High     Excellent       TECHNICAL SPECIFICATIONS       Nominal voltage       Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | High       Very High       Excellent         TECHNICAL SPECIFICATIONS         Nominal voltage         Frequency         Rated current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | High       Very High       Excellent         TECHNICAL SPECIFICATIONS         Nominal voltage         Frequency         Rated current         Potential test voltage phase to phase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | High       Very High       Excellent         TECHNICAL SPECIFICATIONS         Nominal voltage         Frequency         Rated current         Potential test voltage phase to phase         Potential test voltage phase to ground                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | L30       L1       L2       0.13         CX       R       L1       CY $=$ CX       L2       0.12         L10       CX       R       L1       CY $=$ CX       L2       0.12         L10       CX       R       L1       CY $=$ CX       L2       0.12         PEO       CX       R       CY $=$ CX       0.14         PEO       FIN1200       FIN1200HV       0.14         0 / 480 Vac       0 / 600 Vac       0 / 600 Vac         50 - 60 Hz       50 - 60 Hz       50         5 to 3000A       2200 Vdc (2 sec.)       2400 Vdc (2 sec.)         2900 Vdc (2 sec.)       3200 Vdc (2 sec.)       3200 Vdc (2 sec.)                                                                                                                                                                                                                                                                                                                        |
| FIN1200.(280 - 1750).BC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | High       Very High       Excellent         High       Very High       Excellent         TECHNICAL SPECIFICATIONS       Image       Image         Frequency       Rated current       Image         Potential test voltage phase to phase       Potential test voltage phase to ground         Leakage current normal conditions       Image                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | High       Very High       Excellent         TECHNICAL SPECIFICATIONS         Nominal voltage         Frequency         Rated current         Potential test voltage phase to phase         Potential test voltage phase to ground                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | L30       L1       L2       0.13         CX = $ R $ L1       CY = $ CY $ CX       L2       0.12         L10       CX = $ R $ L1       CY = $ CY $ CX       L2       0.14         PEO       CX = $ R $ L1       CY = $ CY $ CY = $ CY $ CX       0.14         PEO       CX = $ R $ L1       CY = $ CY $ CX       0.14         PEO       CX = $ R $ CY = $ CY $ CX       0.14         PEO       CY = $ CY $ VIO       V480 Vac       0 / 600 Vac       0       0         Sto<3000A                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | High       Very High       Excellent         High       Very High       Excellent         TECHNICAL SPECIFICATIONS       Image (Compared to provide to providetotoprove to provide to providetotoprovideto to provide | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | High       Very High       Excellent         High       Very High       Excellent         TECHNICAL SPECIFICATIONS       Image (Compared to provide to providetotoprove to provide to providetotoprovideto to provide | L30       L1       L2       013         CX       R       L1       CY       CX       L2       013         L20       CX       R       L1       CY       CX       L2       013         L10       CX       R       L1       CY       CX       L2       014         PEO       CX       R       CY       CX       014       CX       014         PEO       FIN1200       FIN1200HV       O       0       014       014         V       0 / 480 Vac       0 / 600 Vac       0       0       014         S to 3000A       2200 Vdc (2 sec.)       2400 Vdc (2 sec.)       2400 Vdc (2 sec.)       2900 Vdc (2 sec.)         2900 Vdc (2 sec.)       3200 Vdc (2 sec.)       3200 Vdc (2 sec.)       3200 Vdc (2 sec.)       10 mA         IP20 up to 280A       IP20 up to 280A       IP20 up to 280A       IP20       IP20 up to 280A                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | High       Very High       Excellent         High       Very High       Excellent         TECHNICAL SPECIFICATIONS       Image (Compared to provide to providetotoprove to provide to providetotoprovideto to provide | L30       L1       L2       0.13         L20       CX       IR       L1       CY       CX       L2       0.12         L10       II       III       CY       IIII       CX       L2       0.13         PEO       IIIII       CY       IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | High       Very High       Excellent         High       Very High       Excellent         TECHNICAL SPECIFICATIONS       Image (Compared to provide to providetotopy to provide to providetotopy to provide to provid | L30       L1       L2       0.13         L20       CX       R       L1       CY       CX       L2       0.12         L10       CX       R       L1       CY       CX       L2       0.13         L10       CX       R       L1       CY       CX       L2       0.14         PEO       CX       L2       0.14       CX       L2       0.14         PEO       FIN1200       FIN1200HV       O       PEO       D         0 / 480 Vac       0 / 600 Vac       0       0       0         0 / 480 Vac       0 / 600 Vac       0       0       0         0 / 50 - 60 Hz       5 to 3000A       2200 Vdc (2 sec.)       2400 Vdc (2 sec.)       2900 Vdc (2 sec.)         2900 Vdc (2 sec.)       3200 Vdc (2 sec.)       3200 Vdc (2 sec.)       3200 Vdc (2 sec.)       3200 Vdc (2 sec.)         < 3 mA *                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | High       Very High       Excellent         High       Very High       Excellent         TECHNICAL SPECIFICATIONS       Image (Compared to provide to providetotopy to provide to providetotopy to provide to provid | L30       L1       L2       0.13         L20       CX       R       L1       CY       CX       L2       0.12         L10       CX       R       L1       CY       CX       L2       0.13         PEO       CY       CY       CX       L2       0.14         PEO       CY       CY       CY       CX       L2       0.14         PEO       CY       CY       CY       CX       0.14         PEO       CY       CY       CY       CX       0.14         PEO       CY       CY       CY       CX       0.14         PEO       CY       CY       CY       CX       0.14         PEO       CY       CY       CY       CY       0.14         CY       CY       CY       CY       CY       CY         CY       CY       CY       CY       CY       CY       CY         CY       CY       CY |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | High       Very High       Excellent         High       Very High       Excellent         TECHNICAL SPECIFICATIONS       Image (Compared to provide to providetotopy to provide to providetotopy to provide to provid | LiLio $Li$ $Li$ $CY$ $Li$ Lio $CY$ $CY$ $CY$ $Li$ Lio $CY$ $CY$ $CY$ $Li$ PEO $CY$ $CY$ $CY$ $CY$ D / 480 Vac $O / 600$ Vac $OPE$ Line $CV$ $CY$ $CX$ D / 480 Vac $O / 600$ Vac $O / 600$ VacSo - 60 Hz $S$ $S$ to $3000A$ 2200 Vdc (2 sec.) $2400$ Vdc (2 sec.)2900 Vdc (2 sec.) $3200$ Vdc (2 sec.)2900 Vdc (2 sec.) $3200$ Vdc (2 sec.) $C = 10$ mA $P20$ up to $280A$ IP20 up to $280A$ IP00 over $280A$ IP20 available with protection FINPRT) $4 \times$ Rated current (Switch ON) $2 \times$ In 10 seconds                                                                                                                                                                                                                                                                                                                                                                                                                          |

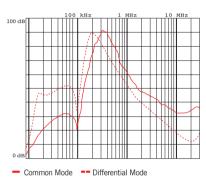
\* Voltage 230 Vac phase to ground 50Hz / 40°C






## FIN1200 - FIN1200HV

CONNECTIONS


#### **ELECTRICAL CHARACTERISTICS**

| FIN11000             |                          |                          |                   | LI        | NE             |            | PE             |
|----------------------|--------------------------|--------------------------|-------------------|-----------|----------------|------------|----------------|
| FIN1200<br>FIN1200HV | Rated<br>Current<br>40°C | Rated<br>Current<br>50°C | Power Loss<br>(W) | d<br>(mm) | Torque<br>(Nm) | d1<br>(mm) | Torque<br>(Nm) |
| .005.V               | 5                        | 4                        | 5                 | M4        | 1.2            | M4         | 1.2            |
| .010.V               | 10                       | 8                        | 7                 | M4        | 1.2            | M4         | 1.2            |
| .016.V               | 16                       | 14                       | 14                | M5        | 4              | M5         | 4              |
| .030.V               | 30                       | 27                       | 11                | M5        | 4              | M5         | 4              |
| .050.V               | 50                       | 46                       | 10                | M6        | 6              | M5         | 4              |
| .080.V               | 80                       | 75                       | 35                | M8        | 14             | M8         | 14             |
| .100.V               | 100                      | 90                       | 42                | M8        | 14             | M8         | 14             |
| .150.V               | 150                      | 140                      | 74                | M10       | 18             | M10        | 18             |
| .200.V               | 200                      | 190                      | 90                | M10       | 18             | M10        | 18             |
| .250.V               | 272                      | 250                      | 90                | M12       | 20             | M10        | 18             |
| .280.V               | 290                      | 280                      | 80                | M12       | 20             | M10        | 18             |
| .280.BC              | 297                      | 280                      | 78                | M8        | 14             | M10        | 18             |
| .320.BC              | 330                      | 320                      | 80                | M8        | 14             | M10        | 18             |
| .360.BC              | 390                      | 360                      | 105               | M8        | 14             | M10        | 18             |
| .400.BC              | 435                      | 400                      | 110               | M8        | 14             | M10        | 18             |
| .500.BC              | 545                      | 500                      | 102               | M8        | 14             | M10        | 18             |
| .600.BC              | 654                      | 600                      | 108               | M10       | 25             | M10        | 18             |
| .750.BC              | 800                      | 750                      | 96                | M10       | 25             | M10        | 18             |
| .900.BC              | 940                      | 900                      | 80                | M12       | 50             | M12        | 20             |
| .1000.BC             | 1050                     | 1000                     | 115               | M12       | 50             | M12        | 20             |
| .1250.BC             | 1290                     | 1250                     | 101               | M12       | 50             | M12        | 20             |
| .1500.BC             | 1550                     | 1500                     | 120               | M12       | 50             | M12        | 20             |
| .1600.BC             | 1650                     | 1600                     | 130               | M12       | 50             | M12        | 20             |
| .1750.BC             | 1800                     | 1750                     | 135               | M12       | 50             | M12        | 20             |
| .2000.BC             | 2050                     | 2000                     | 138               | M12       | 50             | M12        | 20             |
| .2250.BC             | 2300                     | 2250                     | 145               | M12       | 50             | M12        | 20             |
| .2500.BC             | 2550                     | 2500                     | 170               | M12       | 50             | M12        | 20             |
| .3000.BC             | 3000                     | 2950                     | 180               | M12       | 50             | M12        | 20             |

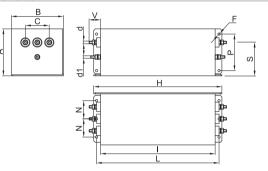
#### **TYPICAL ATTENUATION**



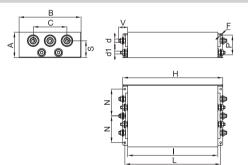
Typical attenuation 5A – 400A



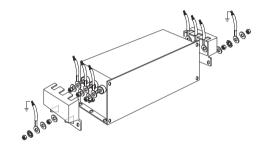
Typical attenuation 500A - 3000A

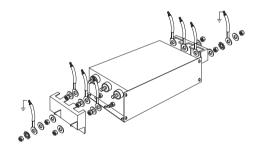



## FIN1200 - FIN1200HV


#### **MECHANICAL DIMENSIONS mm**

| FIN1200<br>FIN1200HV | A  | В   | C   | d   | d1  | ۷  | F   | H   | I.  | L   | N    | Р  | S  | Weight<br>Kg. | Case |
|----------------------|----|-----|-----|-----|-----|----|-----|-----|-----|-----|------|----|----|---------------|------|
| .005.V               | 58 | 86  | 44  | M4  | M4  | 14 | 4.5 | 186 | 160 | 176 | 30   | 40 | 38 | 2             | 1    |
| .010.V               | 58 | 86  | 44  | M4  | M4  | 14 | 4.5 | 186 | 160 | 176 | 30   | 40 | 38 | 2             | 1    |
| .016.V               | 90 | 100 | 46  | M5  | M5  | 28 | 4.5 | 246 | 220 | 235 | 35   | 70 | 64 | 3             | 2    |
| .030.V               | 90 | 100 | 46  | M5  | M5  | 28 | 4.5 | 246 | 220 | 235 | 35   | 70 | 64 | 3             | 2    |
| .050.V               | 90 | 100 | 46  | M6  | M5  | 28 | 4.5 | 246 | 220 | 235 | 35   | 70 | 64 | 3             | 3    |
| .080.V               | 90 | 185 | 84  | M8  | M8  | 25 | 6.5 | 356 | 320 | 340 | 77.5 | 70 | 69 | 5             | 4    |
| .100.V               | 90 | 185 | 84  | M8  | M8  | 25 | 6.5 | 356 | 320 | 340 | 77.5 | 70 | 69 | 5             | 4    |
| .150.V               | 90 | 220 | 120 | M10 | M10 | 29 | 6.5 | 356 | 320 | 340 | 95   | 70 | 60 | 7             | 5    |
| .200.V               | 90 | 220 | 120 | M10 | M10 | 29 | 6.5 | 356 | 320 | 340 | 95   | 70 | 60 | 7             | 5    |
| .250.V               | 90 | 220 | 120 | M12 | M10 | 30 | 6.5 | 356 | 320 | 340 | 95   | 70 | 60 | 9             | 6    |
| .280.V               | 90 | 220 | 120 | M12 | M10 | 30 | 6.5 | 356 | 320 | 340 | 95   | 70 | 60 | 9             | 6    |




CASE 5, 6

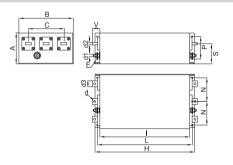


**ASSEMBLY CONNECTION "V"** 

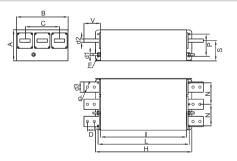




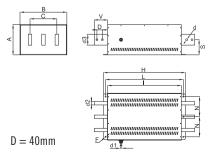




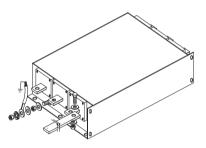

FIN1200 - FIN1200HV


#### **MECHANICAL DIMENSIONS mm**

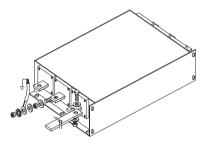
| FIN1200<br>FIN1200HV | A   | В   | C   | d   | d1  | d2 | d3 | ۷   | F   | H   | I.  | L   | N   | Р   | S   | Weight<br>Kg. | Case |
|----------------------|-----|-----|-----|-----|-----|----|----|-----|-----|-----|-----|-----|-----|-----|-----|---------------|------|
| .280.BC              | 90  | 220 | 120 | M8  | M10 | 6  | 20 | 42  | 6.5 | 356 | 320 | 340 | 95  | 70  | 55  | 9             | 7    |
| .320.BC              | 90  | 220 | 120 | M8  | M10 | 6  | 20 | 42  | 6.5 | 356 | 320 | 340 | 95  | 70  | 55  | 9             | 7    |
| .360.BC              | 130 | 230 | 150 | M8  | M10 | 10 | 25 | 42  | 6.5 | 420 | 380 | 400 | 100 | 100 | 85  | 13.5          | 8    |
| .400.BC              | 130 | 230 | 150 | M8  | M10 | 10 | 25 | 42  | 6.5 | 420 | 380 | 400 | 100 | 100 | 85  | 13.5          | 8    |
| .500.BC              | 130 | 230 | 150 | M8  | M10 | 10 | 25 | 42  | 6.5 | 420 | 380 | 400 | 100 | 100 | 85  | 13.5          | 8    |
| .600.BC              | 130 | 230 | 150 | M12 | M10 | 15 | 30 | 48  | 6.5 | 510 | 450 | 480 | 100 | 100 | 85  | 19            | 9    |
| .750.BC              | 130 | 230 | 150 | M12 | M10 | 15 | 30 | 48  | 6.5 | 510 | 450 | 480 | 100 | 100 | 85  | 19            | 9    |
| .900.BC              | 160 | 250 | 140 | M12 | M12 | 20 | 40 | 94  | 8.5 | 510 | 450 | 480 | 100 | 110 | 110 | 27            | 10   |
| .1000.BC             | 160 | 250 | 140 | M12 | M12 | 20 | 40 | 94  | 8.5 | 510 | 450 | 480 | 100 | 110 | 110 | 27            | 10   |
| .1250.BC             | 160 | 250 | 140 | M12 | M12 | 20 | 40 | 94  | 8.5 | 510 | 450 | 480 | 100 | 110 | 110 | 27            | 10   |
| .1500.BC             | 180 | 300 | 200 | M12 | M12 | 20 | 60 | 97  | 8.5 | 560 | 500 | 530 | 125 | 130 | 117 | 30            | 11   |
| .1600.BC             | 180 | 300 | 200 | M12 | M12 | 20 | 60 | 97  | 8.5 | 560 | 500 | 530 | 125 | 130 | 117 | 30            | 11   |
| .1750.BC             | 180 | 300 | 200 | M12 | M12 | 20 | 60 | 97  | 8.5 | 560 | 500 | 530 | 125 | 130 | 117 | 30            | 11   |
| .2000.BC             | 225 | 350 | 200 | M12 | M12 | 25 | 80 | 100 | 8.5 | 610 | 550 | 580 | 150 | -   | 113 | 68            | 12   |
| .2250.BC             | 225 | 350 | 200 | M12 | M12 | 25 | 80 | 100 | 8.5 | 610 | 550 | 580 | 150 | -   | 113 | 68            | 12   |
| .2500.BC             | 225 | 350 | 200 | M12 | M12 | 25 | 80 | 100 | 8.5 | 610 | 550 | 580 | 150 | -   | 113 | 68            | 12   |
| .3000.BC             | 225 | 350 | 200 | M12 | M12 | 25 | 80 | 100 | 8.5 | 610 | 550 | 580 | 150 | -   | 113 | 68            | 12   |

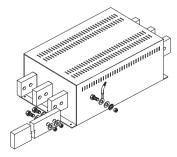

#### CASE 7, 8, 9




#### CASE 10, 11




#### CASE 12




#### ASSEMBLY CONNECTION "BC"



#### **ASSEMBLY CONNECTION "BC"**







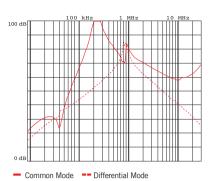


| 誤衆回 EMI/RFI Filter *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | with excellent attenuation                                                             | APPROVALS:                                                                                                                                                                                         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| for industrial a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                        | CAN <sup>®</sup> US CSA C22.2 RoHS CE<br>SCCR by UL508A                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                        |                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | FEATURES                                                                               | BENEFITS                                                                                                                                                                                           |
| 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <ul> <li>Rated current from 5 to 3000A</li> </ul>                                      | • 5 Year warranty                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | • Excellent differential and common mode                                               | Various connections                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | attenuation                                                                            | • Finger safe protection available                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Low leakage current                                                                    | • Vertical bus bar available                                                                                                                                                                       |
| FIN1500.(005 – 280).V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MARKETS                                                                                | ORDERING CODE                                                                                                                                                                                      |
| IN I UUU.(UUU – 200).¥                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Electrical equipment                                                                   | FIN1500(HV) .100 .V                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Machine tools                                                                          | Model Current (A) Connection                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Industrial automation                                                                  | HV = 600Vac $V = Screw$                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                        | BC = Bus bar                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Variable frequency drives / servo drives                                               |                                                                                                                                                                                                    |
| A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Regenerative system                                                                    |                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Renewable energy                                                                       |                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ATTENUATION INDICATOR                                                                  | ELECTRIC DIAGRAM                                                                                                                                                                                   |
| IN1500.(280 – 1750).BC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                        |                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | High Very High Excellent                                                               | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                        |                                                                                                                                                                                                    |
| and the second se |                                                                                        | РЕОО                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                        | Line 👻 Loa                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TECHNICAL SPECIFICATIONS                                                               | FIN1500 FIN1500HV                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Nominal voltage                                                                        | 0 / 480 Vac 0 / 600 Vac                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Frequency                                                                              | 50 – 60 Hz                                                                                                                                                                                         |
| IN1500.(1750 – 3000).BC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Rated current                                                                          | 5 to 3000A                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Potential test voltage phase to phase                                                  | 2200 Vdc (2 sec.) 2400 Vdc (2 sec.)                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Potential test voltage phase to ground                                                 | 2900 Vdc (2 sec.) 3200 Vdc (2 sec.)                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                        |                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Leakage current normal conditions                                                      | <10 mA*                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Leakage current normal conditions<br>Leakage current worst conditions                  | <35 mA                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Leakage current normal conditions                                                      | <35 mA<br>IP20 up to 280A                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Leakage current normal conditions<br>Leakage current worst conditions                  | <35 mA<br>IP20 up to 280A<br>IP00 over 280A                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Leakage current normal conditions<br>Leakage current worst conditions<br>IP Protection | <35 mA<br>IP20 up to 280A<br>IP00 over 280A<br>(IP 20 available with protection FINPRT)                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Leakage current normal conditions<br>Leakage current worst conditions                  | <35 mA<br>IP20 up to 280A<br>IP00 over 280A<br>(IP 20 available with protection FINPRT)<br>4 x Rated current (Switch ON)                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Leakage current normal conditions<br>Leakage current worst conditions<br>IP Protection | <ul> <li>&lt;35 mA</li> <li>IP20 up to 280A</li> <li>IP00 over 280A</li> <li>(IP 20 available with protection FINPRT)</li> <li>4 x Rated current (Switch ON)</li> <li>2 x In 10 seconds</li> </ul> |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Leakage current normal conditions<br>Leakage current worst conditions<br>IP Protection | <35 mA<br>IP20 up to 280A<br>IP00 over 280A<br>(IP 20 available with protection FINPRT)<br>4 x Rated current (Switch ON)                                                                           |

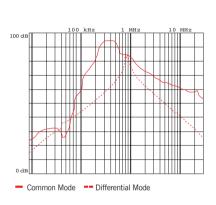
 $^{*}$   $\,$  Voltage 230 Vac phase to ground 50Hz / 40°C  $\,$ 






### FIN1500 - FIN1500HV

CONNECTIONS


#### **ELECTRICAL CHARACTERISTICS**

|                      |                          |                          |                   | L         | NE             |            | PE             |
|----------------------|--------------------------|--------------------------|-------------------|-----------|----------------|------------|----------------|
| FIN1500<br>FIN1500HV | Rated<br>Current<br>40°C | Rated<br>Current<br>50°C | Power Loss<br>(W) | d<br>(mm) | Torque<br>(Nm) | d1<br>(mm) | Torque<br>(Nm) |
| .005.V               | 5                        | 4                        | 5                 | M4        | 1.2            | M4         | 1.2            |
| .010.V               | 10                       | 8                        | 7                 | M4        | 1.2            | M4         | 1.2            |
| .016.V               | 16                       | 14                       | 14                | M5        | 4              | M5         | 4              |
| .030.V               | 30                       | 27                       | 11                | M5        | 4              | M5         | 4              |
| .050.V               | 50                       | 46                       | 10                | M6        | 6              | M5         | 4              |
| .080.V               | 80                       | 75                       | 35                | M8        | 14             | M8         | 14             |
| .100.V               | 100                      | 90                       | 42                | M8        | 14             | M8         | 14             |
| .150.V               | 150                      | 140                      | 74                | M10       | 18             | M10        | 18             |
| .200.V               | 200                      | 190                      | 90                | M10       | 18             | M10        | 18             |
| .250.V               | 272                      | 250                      | 90                | M12       | 20             | M10        | 18             |
| .280.V               | 290                      | 280                      | 80                | M12       | 20             | M10        | 18             |
| .280.BC              | 297                      | 280                      | 78                | M8        | 14             | M10        | 18             |
| .320.BC              | 330                      | 320                      | 80                | M8        | 14             | M10        | 18             |
| .360.BC              | 390                      | 360                      | 105               | M8        | 14             | M10        | 18             |
| .400.BC              | 435                      | 400                      | 110               | M8        | 14             | M10        | 18             |
| .500.BC              | 545                      | 500                      | 102               | M8        | 14             | M10        | 18             |
| .600.BC              | 654                      | 600                      | 108               | M10       | 25             | M10        | 18             |
| .750.BC              | 800                      | 750                      | 96                | M10       | 25             | M10        | 18             |
| .900.BC              | 940                      | 900                      | 80                | M12       | 50             | M12        | 20             |
| .1000.BC             | 1050                     | 1000                     | 115               | M12       | 50             | M12        | 20             |
| .1250.BC             | 1290                     | 1250                     | 101               | M12       | 50             | M12        | 20             |
| .1500.BC             | 1550                     | 1500                     | 120               | M12       | 50             | M12        | 20             |
| .1600.BC             | 1650                     | 1600                     | 130               | M12       | 50             | M12        | 20             |
| .1750.BC             | 1800                     | 1750                     | 135               | M12       | 50             | M12        | 20             |
| .2000.BC             | 2050                     | 2000                     | 138               | M12       | 50             | M12        | 20             |
| .2250.BC             | 2300                     | 2250                     | 145               | M12       | 50             | M12        | 20             |
| .2500.BC             | 2550                     | 2500                     | 170               | M12       | 50             | M12        | 20             |
| .3000.BC             | 3000                     | 2950                     | 180               | M12       | 50             | M12        | 20             |

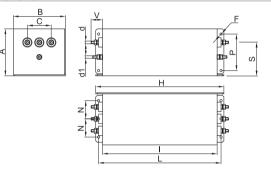
#### **TYPICAL ATTENUATION**



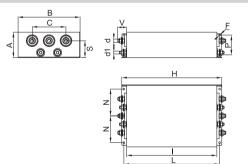
Typical attenuation 5A – 400A



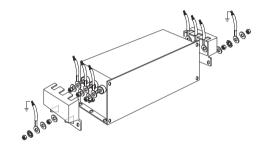
Typical attenuation 500A - 3000A

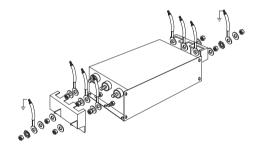



## FIN1500 - FIN1500HV


#### **MECHANICAL DIMENSIONS mm**

| FIN1500<br>FIN1500HV | A  | В   | C   | d   | d1  | V  | F   | H   | I   | L   | N    | Р  | S  | Weight<br>Kg. | Case |
|----------------------|----|-----|-----|-----|-----|----|-----|-----|-----|-----|------|----|----|---------------|------|
| .005.V               | 58 | 86  | 44  | M4  | M4  | 14 | 4.5 | 186 | 160 | 176 | 30   | 40 | 38 | 2             | 1    |
| .010.V               | 58 | 86  | 44  | M4  | M4  | 14 | 4.5 | 186 | 160 | 176 | 30   | 40 | 38 | 2             | 1    |
| .016.V               | 90 | 100 | 46  | M5  | M5  | 28 | 4.5 | 246 | 220 | 235 | 35   | 70 | 64 | 3             | 2    |
| .030.V               | 90 | 100 | 46  | M5  | M5  | 28 | 4.5 | 246 | 220 | 235 | 35   | 70 | 64 | 3             | 2    |
| .050.V               | 90 | 100 | 46  | M6  | M5  | 28 | 4.5 | 246 | 220 | 235 | 35   | 70 | 64 | 3             | 3    |
| .080.V               | 90 | 185 | 84  | M8  | M8  | 25 | 6.5 | 356 | 320 | 340 | 77.5 | 70 | 69 | 5             | 4    |
| .100.V               | 90 | 185 | 84  | M8  | M8  | 25 | 6.5 | 356 | 320 | 340 | 77.5 | 70 | 69 | 5             | 4    |
| .150.V               | 90 | 220 | 120 | M10 | M10 | 29 | 6.5 | 356 | 320 | 340 | 95   | 70 | 60 | 7             | 5    |
| .200.V               | 90 | 220 | 120 | M10 | M10 | 29 | 6.5 | 356 | 320 | 340 | 95   | 70 | 60 | 7             | 5    |
| .250.V               | 90 | 220 | 120 | M12 | M10 | 30 | 6.5 | 356 | 320 | 340 | 95   | 70 | 60 | 9             | 6    |
| .280.V               | 90 | 220 | 120 | M12 | M10 | 30 | 6.5 | 356 | 320 | 340 | 95   | 70 | 60 | 9             | 6    |




CASE 5, 6

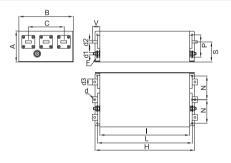


**ASSEMBLY CONNECTION "V"** 

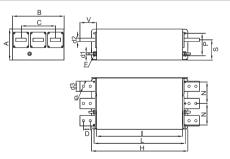




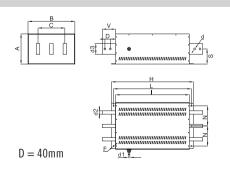




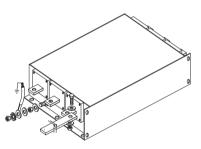

FIN1500 - FIN1500HV


#### **MECHANICAL DIMENSIONS mm**

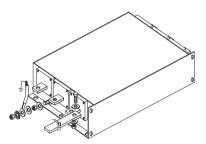
| FIN1500<br>FIN1500HV | A   | В   | C   | d   | d1  | d2 | d3 | V   | F   | H   | I.  | L   | N   | Р   | S   | Weight<br>Kg. | Case |
|----------------------|-----|-----|-----|-----|-----|----|----|-----|-----|-----|-----|-----|-----|-----|-----|---------------|------|
| .280.BC              | 90  | 220 | 120 | M8  | M10 | 6  | 20 | 42  | 6.5 | 356 | 320 | 340 | 95  | 70  | 55  | 9             | 7    |
| .320.BC              | 90  | 220 | 120 | M8  | M10 | 6  | 20 | 42  | 6.5 | 356 | 320 | 340 | 95  | 70  | 55  | 9             | 7    |
| .360.BC              | 130 | 230 | 150 | M8  | M10 | 10 | 25 | 42  | 6.5 | 420 | 380 | 400 | 100 | 100 | 85  | 13.5          | 8    |
| .400.BC              | 130 | 230 | 150 | M8  | M10 | 10 | 25 | 42  | 6.5 | 420 | 380 | 400 | 100 | 100 | 85  | 13.5          | 8    |
| .500.BC              | 130 | 230 | 150 | M8  | M10 | 10 | 25 | 42  | 6.5 | 420 | 380 | 400 | 100 | 100 | 85  | 13.5          | 8    |
| .600.BC              | 130 | 230 | 150 | M12 | M10 | 15 | 30 | 48  | 6.5 | 510 | 450 | 480 | 100 | 100 | 85  | 19            | 9    |
| .750.BC              | 130 | 230 | 150 | M12 | M10 | 15 | 30 | 48  | 6.5 | 510 | 450 | 480 | 100 | 100 | 85  | 19            | 9    |
| .900.BC              | 160 | 250 | 140 | M12 | M12 | 20 | 40 | 94  | 8.5 | 510 | 450 | 480 | 100 | 110 | 110 | 27            | 10   |
| .1000.BC             | 160 | 250 | 140 | M12 | M12 | 20 | 40 | 94  | 8.5 | 510 | 450 | 480 | 100 | 110 | 110 | 27            | 10   |
| .1250.BC             | 160 | 250 | 140 | M12 | M12 | 20 | 40 | 94  | 8.5 | 510 | 450 | 480 | 100 | 110 | 110 | 27            | 10   |
| .1500.BC             | 180 | 300 | 200 | M12 | M12 | 20 | 60 | 97  | 8.5 | 560 | 500 | 530 | 125 | 130 | 117 | 30            | 11   |
| .1600.BC             | 180 | 300 | 200 | M12 | M12 | 20 | 60 | 97  | 8.5 | 560 | 500 | 530 | 125 | 130 | 117 | 30            | 11   |
| .1750.BC             | 180 | 300 | 200 | M12 | M12 | 20 | 60 | 97  | 8.5 | 560 | 500 | 530 | 125 | 130 | 117 | 30            | 11   |
| .2000.BC             | 225 | 350 | 200 | M12 | M12 | 25 | 80 | 100 | 8.5 | 610 | 550 | 580 | 150 | -   | 113 | 68            | 12   |
| .2250.BC             | 225 | 350 | 200 | M12 | M12 | 25 | 80 | 100 | 8.5 | 610 | 550 | 580 | 150 | -   | 113 | 68            | 12   |
| .2500.BC             | 225 | 350 | 200 | M12 | M12 | 25 | 80 | 100 | 8.5 | 610 | 550 | 580 | 150 | -   | 113 | 68            | 12   |
| .3000.BC             | 225 | 350 | 200 | M12 | M12 | 25 | 80 | 100 | 8.5 | 610 | 550 | 580 | 150 | -   | 113 | 68            | 12   |

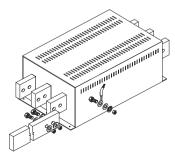

### CASE 7, 8, 9




### CASE 10, 11

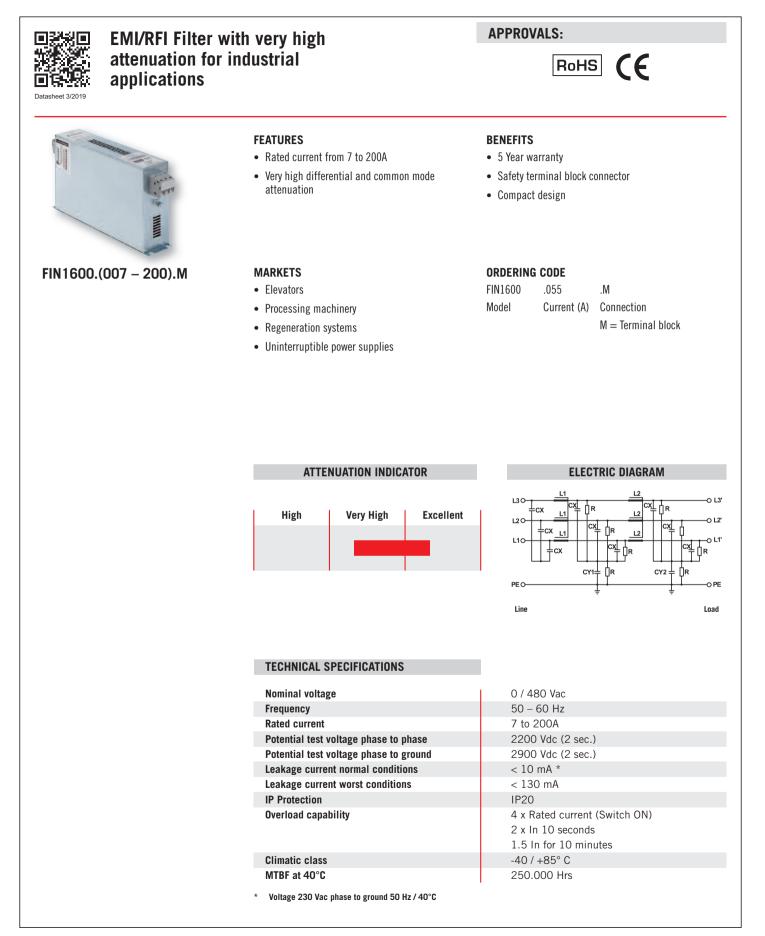



#### CASE 12




#### ASSEMBLY CONNECTION "BC"




#### ASSEMBLY CONNECTION "BC"





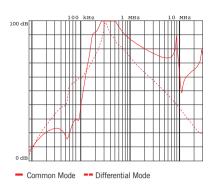










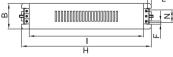

CONNECTIONS

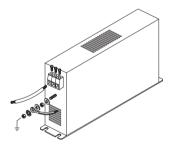
#### **ELECTRICAL CHARACTERISTICS**

| FIN1600 | Rated<br>Current<br>40°C | Rated<br>Current<br>50°C | Power Loss<br>(W) |
|---------|--------------------------|--------------------------|-------------------|
| .007.M  | 7                        | 5                        | 6                 |
| .013.M  | 13                       | 11                       | 10                |
| .018.M  | 18                       | 16                       | 12                |
| .034.M  | 34                       | 30                       | 24                |
| .055.M  | 55                       | 50                       | 27                |
| .090.M  | 90                       | 80                       | 37                |
| .110.M  | 110                      | 100                      | 67                |
| .160.M  | 160                      | 150                      | 100               |
| .200.M  | 200                      | 180                      | 93                |

|                         | LINE                       |                            | P         | ΡE             |
|-------------------------|----------------------------|----------------------------|-----------|----------------|
| Solid<br>Cable<br>(mm²) | Stranded<br>Cable<br>(mm²) | Terminal<br>Torque<br>(Nm) | d<br>(mm) | Torque<br>(Nm) |
| 0.2 - 6                 | 0.2 - 4                    | 0.5                        | M5        | 0.5            |
| 0.2 - 6                 | 0.2 - 4                    | 0.5                        | M5        | 0.5            |
| 0.2 - 6                 | 0.2 - 4                    | 0.5                        | M5        | 0.5            |
| 0.2 - 10                | 0.2 - 6                    | 1.2                        | M5        | 1.2            |
| 0.5 - 16                | 0.5 - 10                   | 1.8                        | M6        | 1.8            |
| 4 - 25                  | 6 - 35                     | 4.5                        | M6        | 4.5            |
| 10 - 50                 | 10 - 50                    | 4                          | M10       | 4              |
| 10 - 50                 | 10 - 50                    | 4                          | M10       | 4              |
| 35 - 95                 | 35 - 95                    | 20                         | M10       | 20             |

#### **TYPICAL ATTENUATION**





#### **MECHANICAL DIMENSIONS mm**

| FIN1600 | A   | В   | V  | <b>V</b> 1 | F   | H   | I.  | L    | N  | d   | Weight<br>Kg. | Case |
|---------|-----|-----|----|------------|-----|-----|-----|------|----|-----|---------------|------|
| .007.M  | 126 | 50  | 19 | 11         | 6.5 | 255 | 225 | 7.5  | 25 | M5  | 1.6           | 1    |
| .013.M  | 126 | 50  | 19 | 11         | 6.5 | 255 | 225 | 7.5  | 25 | M5  | 1.6           | 1    |
| .018.M  | 143 | 55  | 19 | 11         | 6.5 | 305 | 276 | 7.5  | 30 | M5  | 2.2           | 1    |
| .034.M  | 150 | 60  | 19 | 16         | 6.5 | 335 | 305 | 7.5  | 35 | M5  | 2.7           | 1    |
| .055.M  | 185 | 70  | 18 | 33         | 6.5 | 329 | 300 | 7.5  | 45 | M6  | 4.7           | 1    |
| .090.M  | 220 | 80  | 18 | 39         | 6.5 | 329 | 300 | 7.5  | 55 | M6  | 5.5           | 1    |
| .110.M  | 220 | 90  | 28 | 43         | 6.5 | 379 | 350 | 7.5  | 65 | M10 | 7.7           | 1    |
| .160.M  | 240 | 110 | 28 | 43         | 6.5 | 439 | 400 | 12.5 | 65 | M10 | 11            | 1    |
| .200.M  | 240 | 110 | 28 | 50         | 6.5 | 439 | 400 | 12.5 | 65 | M10 | 12            | 1    |

#### CASE 1





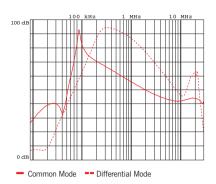




| 121日 EMI/RFI Filter   | with very high attenuation                                                                                                                                            | APPROVALS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| for industrial a      |                                                                                                                                                                       | CAU UL1283<br>CSA C22.2 RoHS (E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| tasheet 3/2019        |                                                                                                                                                                       | SCCR by UL508A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                       | <ul> <li>FEATURES</li> <li>Rated current from 6 to 200A</li> <li>Very high differential and common mode attenuation</li> <li>Very low leakage current</li> </ul>      | <ul> <li>BENEFITS</li> <li>5 Year warranty</li> <li>Safety terminal block connector</li> <li>Helps pass immunity and emission tests for the IEC61000-6-2 and IEC61000-6-4 Standards</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| FIN1700.(006 - 200).M | MARKETS<br>• Food industry<br>• Woodworking machinery<br>• Packaging machinery<br>• Printing machinery                                                                | ORDERING CODE<br>FIN1700 .055 .M<br>Model Current (A) Connection<br>M = Terminal block                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                       | ATTENUATION INDICATOR<br>High Very High Exceller                                                                                                                      | tt ELECTRIC DIAGRAM<br>$L_{30}$ $L_{10}$ |
|                       |                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                       |                                                                                                                                                                       | ÷                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                       | TECHNICAL SPECIFICATIONS                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                       | Nominal voltage<br>Frequency<br>Rated current                                                                                                                         | PEOTOPE<br>Line Load<br>0 / 600 Vac<br>50 – 60 Hz<br>6 to 200A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                       | Nominal voltage<br>Frequency                                                                                                                                          | рео<br>Line Loan<br>0 / 600 Vac<br>50 – 60 Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                       | Nominal voltage<br>Frequency<br>Rated current<br>Potential test voltage phase to phase<br>Potential test voltage phase to ground<br>Leakage current normal conditions | PEOLINE LOAD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |



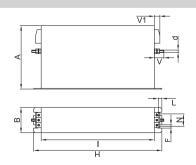


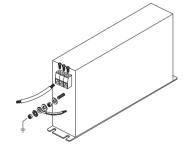

CONNECTIONS

#### **ELECTRICAL CHARACTERISTICS**

| FIN1700 | Rated<br>Current<br>40°C | Rated<br>Current<br>50°C | Power Loss<br>(W) |
|---------|--------------------------|--------------------------|-------------------|
| .006.M  | 8                        | 6                        | 8                 |
| .012.M  | 14                       | 12                       | 10                |
| .016.M  | 18                       | 16                       | 12                |
| .025.M  | 28                       | 25                       | 15                |
| .032.M  | 35                       | 32                       | 23                |
| .042.M  | 50                       | 42                       | 32                |
| .055.M  | 63                       | 55                       | 37                |
| .070.M  | 80                       | 70                       | 52                |
| .080.M  | 90                       | 80                       | 60                |
| .100.M  | 110                      | 100                      | 92                |
| .115.M  | 130                      | 115                      | 101               |
| .150.M  | 175                      | 150                      | 115               |
| .200.M  | 230                      | 200                      | 120               |

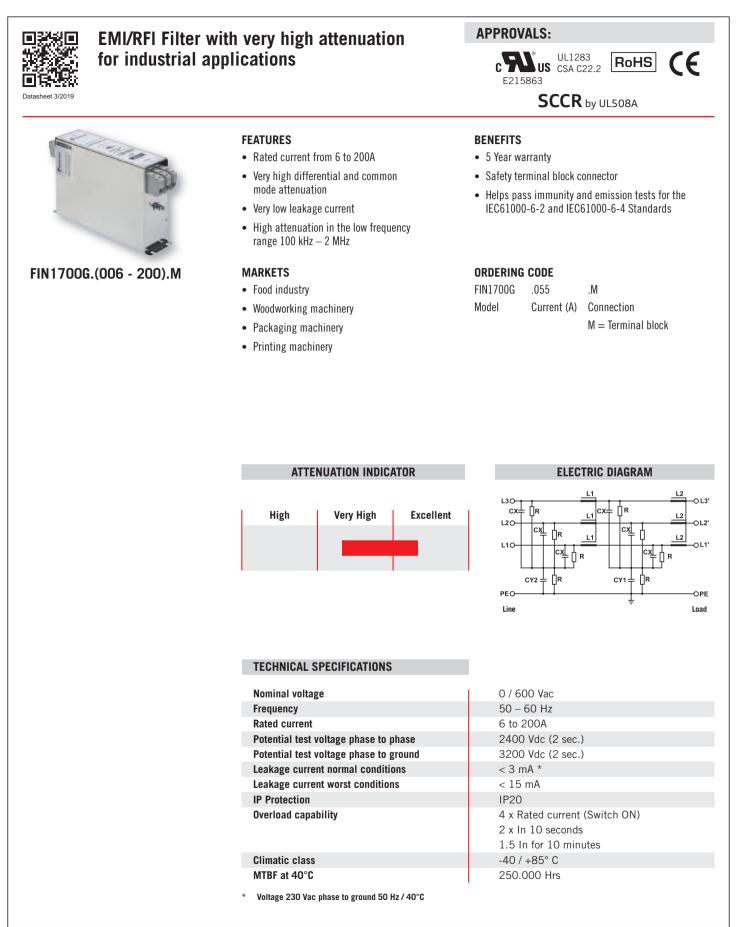
|                         | LINE                                    | PE                         |           |                |  |  |
|-------------------------|-----------------------------------------|----------------------------|-----------|----------------|--|--|
| Solid<br>Cable<br>(mm²) | Stranded<br>Cable<br>(mm <sup>2</sup> ) | Terminal<br>Torque<br>(Nm) | d<br>(mm) | Torque<br>(Nm) |  |  |
| 0.2 - 10                | 0.2 - 6                                 | 1.2                        | M6        | 6              |  |  |
| 0.2 - 10                | 0.2 - 6                                 | 1.2                        | M6        | 6              |  |  |
| 0.2 - 10                | 0.2 - 6                                 | 1.2                        | M6        | 6              |  |  |
| 0.2 - 10                | 0.2 - 6                                 | 1.2                        | M6        | 6              |  |  |
| 0.2 - 10                | 0.2 - 6                                 | 1.2                        | M6        | 6              |  |  |
| 0.5 - 16                | 0.5 - 10                                | 1.8                        | M6        | 6              |  |  |
| 0.5 - 16                | 0.5 - 10                                | 1.8                        | M6        | 6              |  |  |
| 4 - 25                  | 6 - 35                                  | 4.5                        | M10       | 18             |  |  |
| 4 - 25                  | 6 - 35                                  | 4.5                        | M10       | 18             |  |  |
| 10 - 50                 | 10 - 50                                 | 4                          | M10       | 18             |  |  |
| 10 - 50                 | 10 - 50                                 | 4                          | M10       | 18             |  |  |
| 35 - 95                 | 35 - 95                                 | 20                         | M10       | 18             |  |  |
| 35 - 95                 | 35 - 95                                 | 20                         | M10       | 18             |  |  |


#### **TYPICAL ATTENUATION**




#### **MECHANICAL DIMENSIONS mm**

| FIN1700 | A   | В   | V  | V1 | F | H   | I.  | L  | N  | d   | Weight<br>Kg. | Case |
|---------|-----|-----|----|----|---|-----|-----|----|----|-----|---------------|------|
| .006.M  | 140 | 50  | 19 | 15 | 6 | 226 | 200 | 7  | 28 | M6  | 1.7           | 1    |
| .012.M  | 140 | 50  | 19 | 15 | 6 | 226 | 200 | 7  | 28 | M6  | 1.7           | 1    |
| .016.M  | 177 | 60  | 19 | 15 | 6 | 267 | 237 | 8  | 34 | M6  | 1.7           | 1    |
| .025.M  | 177 | 60  | 19 | 15 | 6 | 267 | 237 | 8  | 34 | M6  | 2.3           | 1    |
| .032.M  | 177 | 60  | 19 | 15 | 6 | 267 | 237 | 8  | 34 | M6  | 2.3           | 1    |
| .042.M  | 177 | 70  | 19 | 25 | 6 | 295 | 265 | 8  | 44 | M6  | 3.4           | 1    |
| .055.M  | 177 | 70  | 19 | 33 | 6 | 295 | 265 | 8  | 44 | M6  | 3.5           | 1    |
| .070.M  | 205 | 80  | 28 | 38 | 8 | 390 | 340 | 12 | 53 | M10 | 6             | 1    |
| .080.M  | 205 | 80  | 28 | 38 | 8 | 390 | 340 | 12 | 53 | M10 | 6             | 1    |
| .100.M  | 205 | 80  | 28 | 43 | 8 | 390 | 340 | 12 | 53 | M10 | 7.1           | 1    |
| .115.M  | 205 | 80  | 28 | 43 | 8 | 390 | 340 | 12 | 53 | M10 | 7.1           | 1    |
| .150.M  | 220 | 105 | 28 | 50 | 8 | 420 | 370 | 12 | 78 | M10 | 8.5           | 1    |
| .200.M  | 220 | 105 | 28 | 50 | 8 | 420 | 370 | 12 | 78 | M10 | 8.5           | 1    |


CASE 1







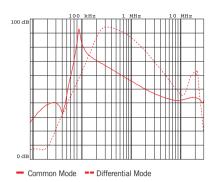
### **FIN1700G**







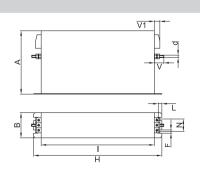
# **FIN1700G**

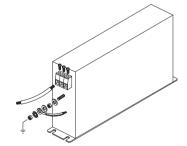

CONNECTIONS

### **ELECTRICAL CHARACTERISTICS**

| FIN1700G | Rated<br>Current<br>40°C | Rated<br>Current<br>50°C | Power Loss<br>(W) |
|----------|--------------------------|--------------------------|-------------------|
| .006.M   | 8                        | 6                        | 8                 |
| .012.M   | 14                       | 12                       | 10                |
| .016.M   | 18                       | 16                       | 12                |
| .025.M   | 28                       | 25                       | 15                |
| .032.M   | 35                       | 32                       | 23                |
| .042.M   | 50                       | 42                       | 32                |
| .055.M   | 63                       | 55                       | 37                |
| .070.M   | 80                       | 70                       | 52                |
| .080.M   | 90                       | 80                       | 60                |
| .100.M   | 110                      | 100                      | 92                |
| .115.M   | 130                      | 115                      | 101               |
| .150.M   | 175                      | 150                      | 115               |
| .200.M   | 230                      | 200                      | 120               |

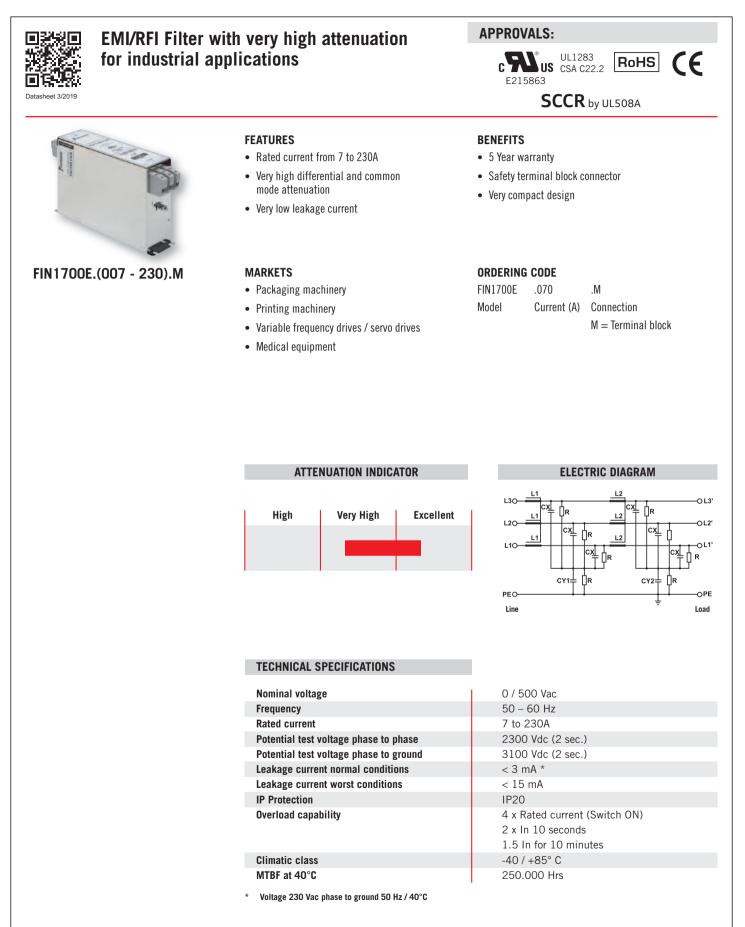
|   |                         | LINE                                    |                            | P         | Έ              |
|---|-------------------------|-----------------------------------------|----------------------------|-----------|----------------|
|   | Solid<br>Cable<br>(mm²) | Stranded<br>Cable<br>(mm <sup>2</sup> ) | Terminal<br>Torque<br>(Nm) | d<br>(mm) | Torque<br>(Nm) |
|   | 0.2 - 10                | 0.2 - 6                                 | 1.2                        | M6        | 6              |
|   | 0.2 - 10                | 0.2 - 6                                 | 1.2                        | M6        | 6              |
|   | 0.2 - 10                | 0.2 - 6                                 | 1.2                        | M6        | 6              |
|   | 0.2 - 10                | 0.2 - 6                                 | 1.2                        | M6        | 6              |
|   | 0.2 - 10                | 0.2 - 6                                 | 1.2                        | M6        | 6              |
|   | 0.5 - 16                | 0.5 - 10                                | 1.8                        | M6        | 6              |
|   | 0.5 - 16                | 0.5 - 10                                | 1.8                        | M6        | 6              |
|   | 4 - 25                  | 6 - 35                                  | 4.5                        | M10       | 18             |
|   | 4 - 25                  | 6 - 35                                  | 4.5                        | M10       | 18             |
|   | 10 - 50                 | 10 - 50                                 | 4                          | M10       | 18             |
| 1 | 10 - 50                 | 10 - 50                                 | 4                          | M10       | 18             |
|   | 35 - 95                 | 35 - 95                                 | 20                         | M10       | 18             |
|   | 35 - 95                 | 35 - 95                                 | 20                         | M10       | 18             |


#### **TYPICAL ATTENUATION**




### **MECHANICAL DIMENSIONS mm**

| FIN1700G | A   | В   | V  | V1 | F | H   | I.  | L  | N  | d   | Weight<br>Kg. | Case |
|----------|-----|-----|----|----|---|-----|-----|----|----|-----|---------------|------|
| .006.M   | 140 | 50  | 19 | 15 | 6 | 226 | 200 | 7  | 28 | M6  | 1.7           | 1    |
| .012.M   | 140 | 50  | 19 | 15 | 6 | 226 | 200 | 7  | 28 | M6  | 1.7           | 1    |
| .016.M   | 177 | 60  | 19 | 15 | 6 | 267 | 237 | 8  | 34 | M6  | 1.7           | 1    |
| .025.M   | 177 | 60  | 19 | 15 | 6 | 267 | 237 | 8  | 34 | M6  | 2.3           | 1    |
| .032.M   | 177 | 60  | 19 | 15 | 6 | 267 | 237 | 8  | 34 | M6  | 2.3           | 1    |
| .042.M   | 177 | 70  | 19 | 25 | 6 | 295 | 265 | 8  | 44 | M6  | 3.4           | 1    |
| .055.M   | 177 | 70  | 19 | 33 | 6 | 295 | 265 | 8  | 44 | M6  | 3.5           | 1    |
| .070.M   | 205 | 80  | 28 | 38 | 8 | 390 | 340 | 12 | 53 | M10 | 6             | 1    |
| .080.M   | 205 | 80  | 28 | 38 | 8 | 390 | 340 | 12 | 53 | M10 | 6             | 1    |
| .100.M   | 205 | 80  | 28 | 43 | 8 | 390 | 340 | 12 | 53 | M10 | 7.1           | 1    |
| .115.M   | 205 | 80  | 28 | 43 | 8 | 390 | 340 | 12 | 53 | M10 | 7.1           | 1    |
| .150.M   | 220 | 105 | 28 | 50 | 8 | 420 | 370 | 12 | 78 | M10 | 8.5           | 1    |
| .200.M   | 220 | 105 | 28 | 50 | 8 | 420 | 370 | 12 | 78 | M10 | 8.5           | 1    |


CASE 1







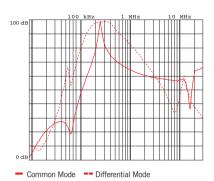
# **FIN1700E**







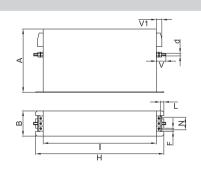
# **FIN1700E**

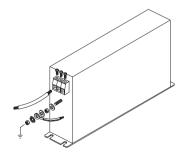

CONNECTIONS

### **ELECTRICAL CHARACTERISTICS**

| FIN1700E | Rated<br>Current<br>40°C | Rated<br>Current<br>50°C | Power Loss<br>(W) |  |
|----------|--------------------------|--------------------------|-------------------|--|
| .007.M   | 7                        | 6                        | 8                 |  |
| .013.M   | 13                       | 12                       | 12                |  |
| .018.M   | 18                       | 16                       | 15                |  |
| .027.M   | 27                       | 25                       | 20                |  |
| .034.M   | 34                       | 32                       | 32                |  |
| .040.M   | 40                       | 36                       | 23                |  |
| .055.M   | 55                       | 50                       | 42                |  |
| .070.M   | 70                       | 64                       | 55                |  |
| .100.M   | 100                      | 90                       | 60                |  |
| .110.M   | 110                      | 100                      | 90                |  |
| .130.M   | 130                      | 120                      | 98                |  |
| .150.M   | 150                      | 135                      | 103               |  |
| .200.M   | 200                      | 180                      | 115               |  |
| .230.M   | 230                      | 210                      | 120               |  |

|                         | LINE                       |                            | F         | PE             |
|-------------------------|----------------------------|----------------------------|-----------|----------------|
| Solid<br>Cable<br>(mm²) | Stranded<br>Cable<br>(mm²) | Terminal<br>Torque<br>(Nm) | d<br>(mm) | Torque<br>(Nm) |
| 0.2 - 10                | 0.2 - 6                    | 1.2                        | M6        | 6              |
| 0.2 - 10                | 0.2 - 6                    | 1.2                        | M6        | 6              |
| 0.2 - 10                | 0.2 - 6                    | 1.2                        | M6        | 6              |
| 0.2 - 10                | 0.2 - 6                    | 1.2                        | M6        | 6              |
| 0.2 - 10                | 0.2 - 6                    | 1.2                        | M6        | 6              |
| 0.2 - 10                | 0.2 - 6                    | 1.2                        | M6        | 6              |
| 0.5 - 16                | 0.5 - 10                   | 1.8                        | M6        | 6              |
| 0.5 - 16                | 0.5 - 10                   | 1.8                        | M6        | 6              |
| 4 - 25                  | 6 - 35                     | 4.5                        | M10       | 18             |
| 4 - 25                  | 6 - 35                     | 4.5                        | M10       | 18             |
| 10 - 50                 | 10 - 50                    | 4                          | M10       | 18             |
| 10 - 50                 | 10 - 50                    | 4                          | M10       | 18             |
| 35 - 95                 | 35 - 95                    | 20                         | M10       | 18             |
| 35 - 95                 | 35 - 95                    | 20                         | M10       | 18             |

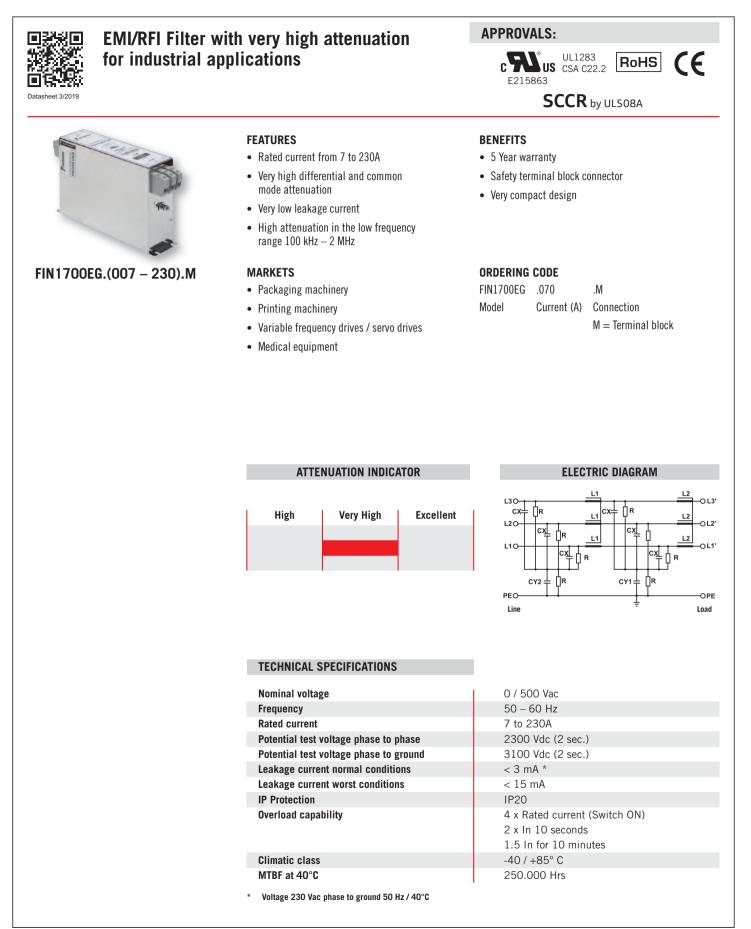

#### **TYPICAL ATTENUATION**




### **MECHANICAL DIMENSIONS mm**

|          |     |     |      |    |   |     |     |    |    |     | Weislat       |      |
|----------|-----|-----|------|----|---|-----|-----|----|----|-----|---------------|------|
| FIN1700E | A   | В   | V    | V1 | F | H   | 1   | L  | N  | d   | Weight<br>Kg. | Case |
| .007.M   | 140 | 50  | 19   | 15 | 6 | 226 | 200 | 7  | 28 | M6  | 1.7           | 1    |
| .013.M   | 140 | 50  | 19   | 15 | 6 | 226 | 200 | 7  | 28 | M6  | 1.7           | 1    |
| .018.M   | 140 | 50  | 19   | 15 | 6 | 226 | 200 | 7  | 28 | M6  | 1.7           | 1    |
| .027.M   | 140 | 50  | 19   | 15 | 6 | 226 | 200 | 7  | 28 | M6  | 1.7           | 1    |
| .034.M   | 140 | 50  | 19   | 15 | 6 | 226 | 200 | 7  | 28 | M6  | 1.7           | 1    |
| .040.M   | 140 | 50  | 19   | 15 | 6 | 226 | 200 | 7  | 28 | M6  | 1.7           | 1    |
| .055.M   | 177 | 70  | 19   | 25 | 6 | 295 | 265 | 8  | 44 | M6  | 3.7           | 1    |
| .070.M   | 177 | 70  | 19   | 33 | 6 | 295 | 265 | 8  | 44 | M6  | 5.2           | 1    |
| .100.M   | 205 | 80  | 28.5 | 38 | 8 | 390 | 340 | 12 | 53 | M10 | 6.5           | 1    |
| .110.M   | 205 | 80  | 28.5 | 38 | 8 | 390 | 340 | 12 | 53 | M10 | 6.5           | 1    |
| .130.M   | 205 | 80  | 28.5 | 43 | 8 | 390 | 340 | 12 | 53 | M10 | 7.1           | 1    |
| .150.M   | 205 | 80  | 28.5 | 43 | 8 | 390 | 340 | 12 | 53 | M10 | 7.1           | 1    |
| .200.M   | 220 | 105 | 28.5 | 50 | 8 | 420 | 370 | 12 | 78 | M10 | 8             | 1    |
| .230.M   | 220 | 105 | 28.5 | 50 | 8 | 420 | 370 | 12 | 78 | M10 | 8             | 1    |

CASE 1









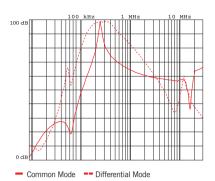

# FIN1700EG







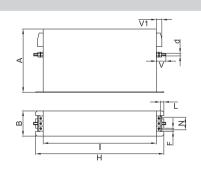
# FIN1700EG

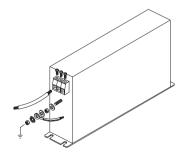

CONNECTIONS

### **ELECTRICAL CHARACTERISTICS**

| FIN1700EG | Rated<br>Current<br>40°C | Rated<br>Current<br>50°C | Power Loss<br>(W) |  |
|-----------|--------------------------|--------------------------|-------------------|--|
| .007.M    | 7                        | 6                        | 8                 |  |
| .013.M    | 13                       | 12                       | 12                |  |
| .018.M    | 18                       | 16                       | 15                |  |
| .027.M    | 27                       | 25                       | 20                |  |
| .034.M    | 34                       | 32                       | 32                |  |
| .040.M    | 40                       | 36                       | 23                |  |
| .055.M    | 55                       | 50                       | 42                |  |
| .070.M    | 70                       | 64                       | 55                |  |
| .100.M    | 100                      | 90                       | 60                |  |
| .110.M    | 110                      | 100                      | 90                |  |
| .130.M    | 130                      | 120                      | 98                |  |
| .150.M    | 150                      | 135                      | 103               |  |
| .200.M    | 200                      | 180                      | 115               |  |
| .230.M    | 230                      | 210                      | 120               |  |

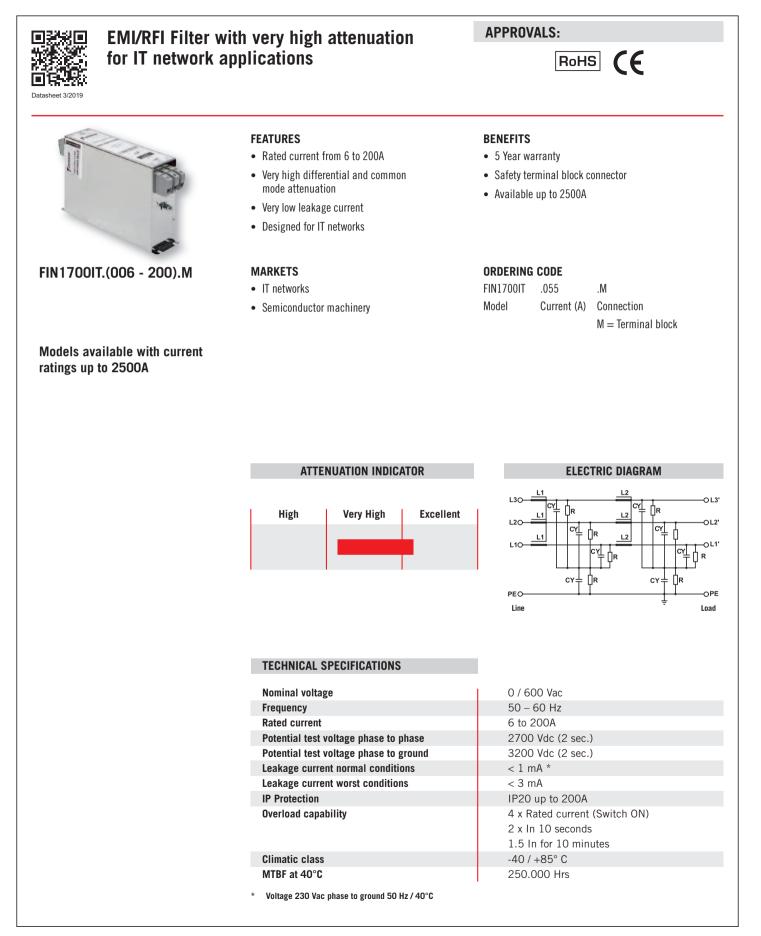
|                         | LINE                       |                            | F         | PE             |
|-------------------------|----------------------------|----------------------------|-----------|----------------|
| Solid<br>Cable<br>(mm²) | Stranded<br>Cable<br>(mm²) | Terminal<br>Torque<br>(Nm) | d<br>(mm) | Torque<br>(Nm) |
| 0.2 - 10                | 0.2 - 6                    | 1.2                        | M6        | 6              |
| 0.2 - 10                | 0.2 - 6                    | 1.2                        | M6        | 6              |
| 0.2 - 10                | 0.2 - 6                    | 1.2                        | M6        | 6              |
| 0.2 - 10                | 0.2 - 6                    | 1.2                        | M6        | 6              |
| 0.2 - 10                | 0.2 - 6                    | 1.2                        | M6        | 6              |
| 0.2 - 10                | 0.2 - 6                    | 1.2                        | M6        | 6              |
| 0.5 - 16                | 0.5 - 10                   | 1.8                        | M6        | 6              |
| 0.5 - 16                | 0.5 - 10                   | 1.8                        | M6        | 6              |
| 4 - 25                  | 6 - 35                     | 4.5                        | M10       | 18             |
| 4 - 25                  | 6 - 35                     | 4.5                        | M10       | 18             |
| 10 - 50                 | 10 - 50                    | 4                          | M10       | 18             |
| 10 - 50                 | 10 - 50                    | 4                          | M10       | 18             |
| 35 - 95                 | 35 - 95                    | 20                         | M10       | 18             |
| 35 - 95                 | 35 - 95                    | 20                         | M10       | 18             |


### **TYPICAL ATTENUATION**




### MECHANICAL DIMENSIONS mm

| FIN1700EG | A   | В   | V    | V1 | F | H   | 1   | L  | N  | d   | Weight<br>Kg. | Case |
|-----------|-----|-----|------|----|---|-----|-----|----|----|-----|---------------|------|
| .007.M    | 140 | 50  | 19   | 15 | 6 | 226 | 200 | 7  | 28 | M6  | 1.7           | 1    |
| .013.M    | 140 | 50  | 19   | 15 | 6 | 226 | 200 | 7  | 28 | M6  | 1.7           | 1    |
| .018.M    | 140 | 50  | 19   | 15 | 6 | 226 | 200 | 7  | 28 | M6  | 1.7           | 1    |
| .027.M    | 140 | 50  | 19   | 15 | 6 | 226 | 200 | 7  | 28 | M6  | 1.7           | 1    |
| .034.M    | 140 | 50  | 19   | 15 | 6 | 226 | 200 | 7  | 28 | M6  | 1.7           | 1    |
| .040.M    | 140 | 50  | 19   | 15 | 6 | 226 | 200 | 7  | 28 | M6  | 1.7           | 1    |
| .055.M    | 177 | 70  | 19   | 25 | 6 | 295 | 265 | 8  | 44 | M6  | 3.7           | 1    |
| .070.M    | 177 | 70  | 19   | 33 | 6 | 295 | 265 | 8  | 44 | M6  | 5.2           | 1    |
| .100.M    | 205 | 80  | 28.5 | 38 | 8 | 390 | 340 | 12 | 53 | M10 | 6.5           | 1    |
| .110.M    | 205 | 80  | 28.5 | 38 | 8 | 390 | 340 | 12 | 53 | M10 | 6.5           | 1    |
| .130.M    | 205 | 80  | 28.5 | 43 | 8 | 390 | 340 | 12 | 53 | M10 | 7.1           | 1    |
| .150.M    | 205 | 80  | 28.5 | 43 | 8 | 390 | 340 | 12 | 53 | M10 | 7.1           | 1    |
| .200.M    | 220 | 105 | 28.5 | 50 | 8 | 420 | 370 | 12 | 78 | M10 | 8             | 1    |
| .230.M    | 220 | 105 | 28.5 | 50 | 8 | 420 | 370 | 12 | 78 | M10 | 8             | 1    |


CASE 1







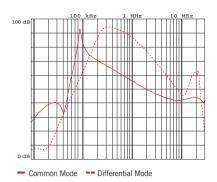
# FIN1700IT







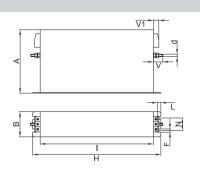
# FIN1700IT

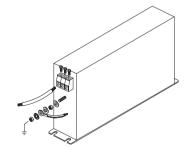

CONNECTIONS

### **ELECTRICAL CHARACTERISTICS**

| FIN1700IT | Rated<br>Current<br>40°C | Rated<br>Current<br>50°C | Power Loss<br>(W) |
|-----------|--------------------------|--------------------------|-------------------|
| .006.M    | 8                        | 6                        | 8                 |
| .012.M    | 14                       | 12                       | 10                |
| .016.M    | 18                       | 16                       | 12                |
| .025.M    | 28                       | 25                       | 15                |
| .032.M    | 35                       | 32                       | 23                |
| .042.M    | 50                       | 42                       | 32                |
| .055.M    | 63                       | 55                       | 37                |
| .070.M    | 80                       | 70                       | 52                |
| .080.M    | 90                       | 80                       | 60                |
| .100.M    | 110                      | 100                      | 92                |
| .115.M    | 130                      | 115                      | 101               |
| .150.M    | 175                      | 150                      | 115               |
| .200.M    | 230                      | 200                      | 120               |

|                                      | LINE                                    |                            | F         | ΡE             |
|--------------------------------------|-----------------------------------------|----------------------------|-----------|----------------|
| Solid<br>Cable<br>(mm <sup>2</sup> ) | Stranded<br>Cable<br>(mm <sup>2</sup> ) | Terminal<br>Torque<br>(Nm) | d<br>(mm) | Torque<br>(Nm) |
| 0.2 - 10                             | 0.2 - 6                                 | 1.2                        | M6        | 6              |
| 0.2 - 10                             | 0.2 - 6                                 | 1.2                        | M6        | 6              |
| 0.2 - 10                             | 0.2 - 6                                 | 1.2                        | M6        | 6              |
| 0.2 - 10                             | 0.2 - 6                                 | 1.2                        | M6        | 6              |
| 0.2 - 10                             | 0.2 - 6                                 | 1.2                        | M6        | 6              |
| 0.5 - 16                             | 0.5 - 10                                | 1.8                        | M6        | 6              |
| 0.5 - 16                             | 0.5 - 10                                | 1.8                        | M6        | 6              |
| 4 - 25                               | 6 - 35                                  | 4.5                        | M10       | 18             |
| 4 - 25                               | 6 - 35                                  | 4.5                        | M10       | 18             |
| 10 - 50                              | 10 - 50                                 | 4                          | M10       | 18             |
| 10 - 50                              | 10 - 50                                 | 4                          | M10       | 18             |
| 35 - 95                              | 35 - 95                                 | 20                         | M10       | 18             |
| 35 - 95                              | 35 - 95                                 | 20                         | M10       | 18             |


#### **TYPICAL ATTENUATION**




### **MECHANICAL DIMENSIONS mm**

| FIN1700IT | A   | В   | V  | V1 | F | H   | I.  | L  | N  | d   | Weight<br>Kg. | Case |
|-----------|-----|-----|----|----|---|-----|-----|----|----|-----|---------------|------|
| .006.M    | 140 | 50  | 19 | 15 | 6 | 226 | 200 | 7  | 28 | M6  | 1.7           | 1    |
| .012.M    | 140 | 50  | 19 | 15 | 6 | 226 | 200 | 7  | 28 | M6  | 1.7           | 1    |
| .016.M    | 177 | 60  | 19 | 15 | 6 | 267 | 237 | 8  | 34 | M6  | 1.7           | 1    |
| .025.M    | 177 | 60  | 19 | 15 | 6 | 267 | 237 | 8  | 34 | M6  | 2.3           | 1    |
| .032.M    | 177 | 60  | 19 | 15 | 6 | 267 | 237 | 8  | 34 | M6  | 2.3           | 1    |
| .042.M    | 177 | 70  | 19 | 25 | 6 | 295 | 265 | 8  | 44 | M6  | 3.4           | 1    |
| .055.M    | 177 | 70  | 19 | 33 | 6 | 295 | 265 | 8  | 44 | M6  | 3.5           | 1    |
| .070.M    | 205 | 80  | 28 | 38 | 8 | 390 | 340 | 12 | 53 | M10 | 6             | 1    |
| .080.M    | 205 | 80  | 28 | 38 | 8 | 390 | 340 | 12 | 53 | M10 | 6             | 1    |
| .100.M    | 205 | 80  | 28 | 43 | 8 | 390 | 340 | 12 | 53 | M10 | 7.1           | 1    |
| .115.M    | 205 | 80  | 28 | 43 | 8 | 390 | 340 | 12 | 53 | M10 | 7.1           | 1    |
| .150.M    | 220 | 105 | 28 | 50 | 8 | 420 | 370 | 12 | 78 | M10 | 8.5           | 1    |
| .200.M    | 220 | 105 | 28 | 50 | 8 | 420 | 370 | 12 | 78 | M10 | 8.5           | 1    |

CASE 1



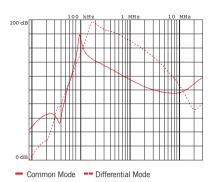




| EMI/RFI Filter        | with excellent attenuation                                                                                                                                                                       | APPROVALS:                                                                                                                       |  |  |  |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| for industrial a      |                                                                                                                                                                                                  | CALUS UL1283<br>CSA C22.2 RoHS (E                                                                                                |  |  |  |
| tasheet 3/2019        |                                                                                                                                                                                                  | SCCR by UL508A                                                                                                                   |  |  |  |
|                       | FEATURES                                                                                                                                                                                         | BENEFITS                                                                                                                         |  |  |  |
| The second            | • Rated current from 6 to 200A                                                                                                                                                                   | • 5 Year warranty                                                                                                                |  |  |  |
|                       | • Excellent differential and common mode                                                                                                                                                         | <ul> <li>Safety terminal block connector</li> </ul>                                                                              |  |  |  |
| ndadar                | attenuation                                                                                                                                                                                      | • Helps pass immunity and emission tests for the                                                                                 |  |  |  |
| 1982                  | Low leakage current                                                                                                                                                                              | IEC61000-6-2 and IÉC61000-6-4 Standards                                                                                          |  |  |  |
| FIN1900.(006 – 200).M | MARKETS                                                                                                                                                                                          | ORDERING CODE                                                                                                                    |  |  |  |
|                       | Machine tools                                                                                                                                                                                    | FIN1900 .055 .M                                                                                                                  |  |  |  |
|                       | <ul> <li>Packaging machinery</li> </ul>                                                                                                                                                          | Model Current (A) Connection                                                                                                     |  |  |  |
|                       | Semiconductor machinery                                                                                                                                                                          | M = Terminal block                                                                                                               |  |  |  |
|                       | <ul> <li>Processing machinery</li> </ul>                                                                                                                                                         |                                                                                                                                  |  |  |  |
|                       | • Flucessing machinery                                                                                                                                                                           |                                                                                                                                  |  |  |  |
|                       | ATTENUATION INDICATOR                                                                                                                                                                            |                                                                                                                                  |  |  |  |
|                       | High Very High Excellent                                                                                                                                                                         | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                            |  |  |  |
|                       |                                                                                                                                                                                                  |                                                                                                                                  |  |  |  |
|                       | TECHNICAL SPECIFICATIONS                                                                                                                                                                         |                                                                                                                                  |  |  |  |
|                       | Nominal voltage                                                                                                                                                                                  | 0 / 600 Vac                                                                                                                      |  |  |  |
|                       | Frequency                                                                                                                                                                                        | 50 – 60 Hz                                                                                                                       |  |  |  |
|                       | Rated current                                                                                                                                                                                    | 50 – 60 Hz<br>6 to 200A                                                                                                          |  |  |  |
|                       |                                                                                                                                                                                                  | 2400 Vdc (2 sec.)                                                                                                                |  |  |  |
|                       | Potential test voltage phase to phase                                                                                                                                                            | 2400 Vdc (2 sec.)                                                                                                                |  |  |  |
|                       | Potential test voltage phase to phase<br>Potential test voltage phase to ground                                                                                                                  | 3200 Vdc (2 sec.)                                                                                                                |  |  |  |
|                       | Potential test voltage phase to phase<br>Potential test voltage phase to ground<br>Leakage current normal conditions                                                                             | 3200 Vdc (2 sec.)<br>< 10 mA *                                                                                                   |  |  |  |
|                       | Potential test voltage phase to phase<br>Potential test voltage phase to ground<br>Leakage current normal conditions<br>Leakage current worst conditions                                         | 3200 Vdc (2 sec.)<br>< 10 mA *<br>< 80 mA                                                                                        |  |  |  |
|                       | Potential test voltage phase to phase<br>Potential test voltage phase to ground<br>Leakage current normal conditions<br>Leakage current worst conditions<br>IP Protection                        | 3200 Vdc (2 sec.)<br>< 10 mA *<br>< 80 mA<br>IP20                                                                                |  |  |  |
|                       | Potential test voltage phase to phase<br>Potential test voltage phase to ground<br>Leakage current normal conditions<br>Leakage current worst conditions                                         | 3200 Vdc (2 sec.)<br>< 10 mA *<br>< 80 mA<br>IP20<br>4 x Rated current (Switch ON)                                               |  |  |  |
|                       | Potential test voltage phase to phase<br>Potential test voltage phase to ground<br>Leakage current normal conditions<br>Leakage current worst conditions<br>IP Protection                        | 3200 Vdc (2 sec.)<br>< 10 mA *<br>< 80 mA<br>IP20<br>4 x Rated current (Switch ON)<br>2 x In 10 seconds                          |  |  |  |
|                       | Potential test voltage phase to phase<br>Potential test voltage phase to ground<br>Leakage current normal conditions<br>Leakage current worst conditions<br>IP Protection                        | 3200 Vdc (2 sec.)<br>< 10 mA *<br>< 80 mA<br>IP20<br>4 x Rated current (Switch ON)                                               |  |  |  |
|                       | Potential test voltage phase to phase<br>Potential test voltage phase to ground<br>Leakage current normal conditions<br>Leakage current worst conditions<br>IP Protection<br>Overload capability | 3200 Vdc (2 sec.)<br>< 10 mA *<br>< 80 mA<br>IP20<br>4 x Rated current (Switch ON)<br>2 x In 10 seconds<br>1.5 In for 10 minutes |  |  |  |



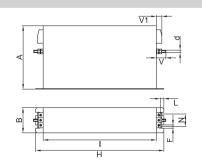


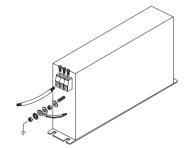

CONNECTIONS

### **ELECTRICAL CHARACTERISTICS**

| FIN1900 | Rated<br>Current<br>40°C | Rated<br>Current<br>50°C | Power Loss<br>(W) |
|---------|--------------------------|--------------------------|-------------------|
| .006.M  | 8                        | 6                        | 8                 |
| .012.M  | 14                       | 12                       | 10                |
| .016.M  | 18                       | 16                       | 12                |
| .025.M  | 28                       | 25                       | 15                |
| .032.M  | 35                       | 32                       | 23                |
| .042.M  | 50                       | 42                       | 32                |
| .055.M  | 63                       | 55                       | 37                |
| .070.M  | 80                       | 70                       | 52                |
| .080.M  | 90                       | 80                       | 60                |
| .100.M  | 110                      | 100                      | 92                |
| .115.M  | 130                      | 115                      | 101               |
| .150.M  | 175                      | 150                      | 115               |
| .200.M  | 230                      | 200                      | 120               |

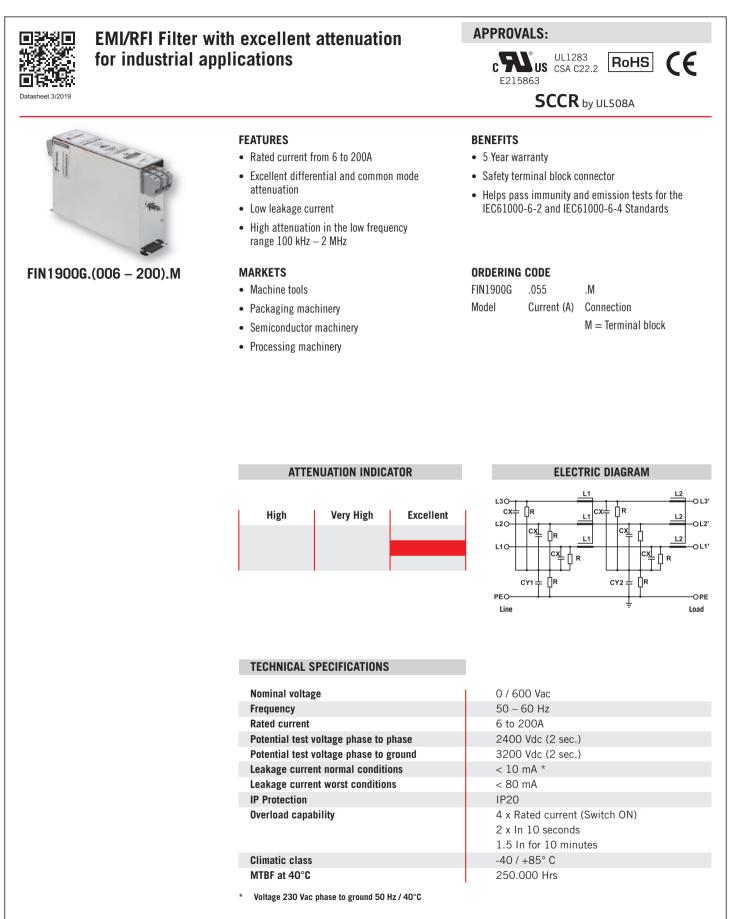
|                         | LINE                                    |                            | F         | ΡE             |
|-------------------------|-----------------------------------------|----------------------------|-----------|----------------|
| Solid<br>Cable<br>(mm²) | Stranded<br>Cable<br>(mm <sup>2</sup> ) | Terminal<br>Torque<br>(Nm) | d<br>(mm) | Torque<br>(Nm) |
| 0.2 - 10                | 0.2 - 6                                 | 1.2                        | M6        | 6              |
| 0.2 - 10                | 0.2 - 6                                 | 1.2                        | M6        | 6              |
| 0.2 - 10                | 0.2 - 6                                 | 1.2                        | M6        | 6              |
| 0.2 - 10                | 0.2 - 6                                 | 1.2                        | M6        | 6              |
| 0.2 - 10                | 0.2 - 6                                 | 1.2                        | M6        | 6              |
| 0.5 - 16                | 0.5 - 10                                | 1.8                        | M6        | 6              |
| 0.5 - 16                | 0.5 - 10                                | 1.8                        | M6        | 6              |
| 4 - 25                  | 6 - 35                                  | 4.5                        | M10       | 18             |
| 4 - 25                  | 6 - 35                                  | 4.5                        | M10       | 18             |
| 10 - 50                 | 10 - 50                                 | 4                          | M10       | 18             |
| 10 - 50                 | 10 - 50                                 | 4                          | M10       | 18             |
| 35 - 95                 | 35 - 95                                 | 20                         | M10       | 18             |
| 35 - 95                 | 35 - 95                                 | 20                         | M10       | 18             |


### **TYPICAL ATTENUATION**




### **MECHANICAL DIMENSIONS mm**

| FIN1900 | A   | В   | V  | V1 | F | H   | I.  | L  | N  | d   | Weight<br>Kg. | Case |
|---------|-----|-----|----|----|---|-----|-----|----|----|-----|---------------|------|
| .006.M  | 140 | 50  | 19 | 15 | 6 | 226 | 200 | 7  | 28 | M6  | 1.7           | 1    |
| .012.M  | 140 | 50  | 19 | 15 | 6 | 226 | 200 | 7  | 28 | M6  | 1.7           | 1    |
| .016.M  | 177 | 60  | 19 | 15 | 6 | 267 | 237 | 8  | 34 | M6  | 1.7           | 1    |
| .025.M  | 177 | 60  | 19 | 15 | 6 | 267 | 237 | 8  | 34 | M6  | 2.3           | 1    |
| .032.M  | 177 | 60  | 19 | 15 | 6 | 267 | 237 | 8  | 34 | M6  | 2.3           | 1    |
| .042.M  | 177 | 70  | 19 | 25 | 6 | 295 | 265 | 8  | 44 | M6  | 3.4           | 1    |
| .055.M  | 177 | 70  | 19 | 33 | 6 | 295 | 265 | 8  | 44 | M6  | 3.5           | 1    |
| .070.M  | 205 | 80  | 28 | 38 | 8 | 390 | 340 | 12 | 53 | M10 | 6             | 1    |
| .080.M  | 205 | 80  | 28 | 38 | 8 | 390 | 340 | 12 | 53 | M10 | 6             | 1    |
| .100.M  | 205 | 80  | 28 | 43 | 8 | 390 | 340 | 12 | 53 | M10 | 7.1           | 1    |
| .115.M  | 205 | 80  | 28 | 43 | 8 | 390 | 340 | 12 | 53 | M10 | 7.1           | 1    |
| .150.M  | 220 | 105 | 28 | 50 | 8 | 420 | 370 | 12 | 78 | M10 | 8.5           | 1    |
| .200.M  | 220 | 105 | 28 | 50 | 8 | 420 | 370 | 12 | 78 | M10 | 8.5           | 1    |


#### CASE 1







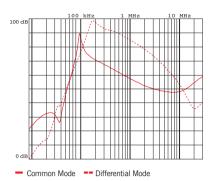
# FIN1900G







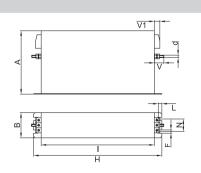
# FIN1900G

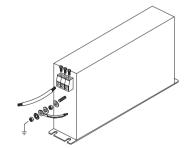

CONNECTIONS

### **ELECTRICAL CHARACTERISTICS**

| FIN1900G | Rated<br>Current<br>40°C | Rated<br>Current<br>50°C | Power Loss<br>(W) |
|----------|--------------------------|--------------------------|-------------------|
| .006.M   | 8                        | 6                        | 8                 |
| .012.M   | 14                       | 12                       | 10                |
| .016.M   | 18                       | 16                       | 12                |
| .025.M   | 28                       | 25                       | 15                |
| .032.M   | 35                       | 32                       | 23                |
| .042.M   | 50                       | 42                       | 32                |
| .055.M   | 63                       | 55                       | 37                |
| .070.M   | 80                       | 70                       | 52                |
| .080.M   | 90                       | 80                       | 60                |
| .100.M   | 110                      | 100                      | 92                |
| .115.M   | 130                      | 115                      | 101               |
| .150.M   | 175                      | 150                      | 115               |
| .200.M   | 230                      | 200                      | 120               |

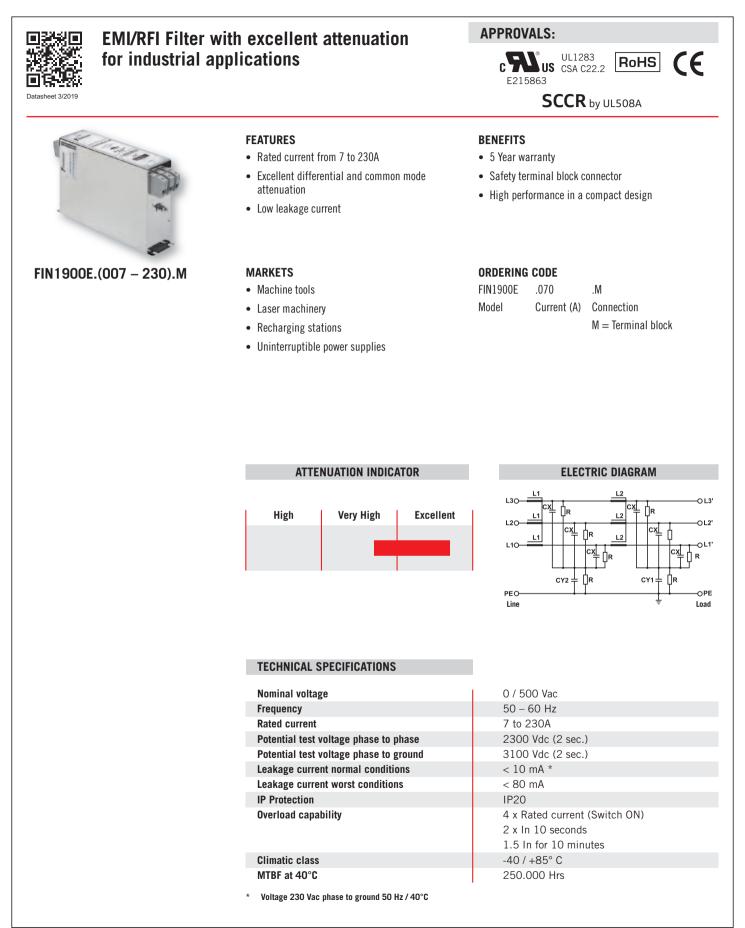
|                         | LINE                                    |                            | F         | ΡE             |
|-------------------------|-----------------------------------------|----------------------------|-----------|----------------|
| Solid<br>Cable<br>(mm²) | Stranded<br>Cable<br>(mm <sup>2</sup> ) | Terminal<br>Torque<br>(Nm) | d<br>(mm) | Torque<br>(Nm) |
| 0.2 - 10                | 0.2 - 6                                 | 1.2                        | M6        | 6              |
| 0.2 - 10                | 0.2 - 6                                 | 1.2                        | M6        | 6              |
| 0.2 - 10                | 0.2 - 6                                 | 1.2                        | M6        | 6              |
| 0.2 - 10                | 0.2 - 6                                 | 1.2                        | M6        | 6              |
| 0.2 - 10                | 0.2 - 6                                 | 1.2                        | M6        | 6              |
| 0.5 - 16                | 0.5 - 10                                | 1.8                        | M6        | 6              |
| 0.5 - 16                | 0.5 - 10                                | 1.8                        | M6        | 6              |
| 4 - 25                  | 6 - 35                                  | 4.5                        | M10       | 18             |
| 4 - 25                  | 6 - 35                                  | 4.5                        | M10       | 18             |
| 10 - 50                 | 10 - 50                                 | 4                          | M10       | 18             |
| 10 - 50                 | 10 - 50                                 | 4                          | M10       | 18             |
| 35 - 95                 | 35 - 95                                 | 20                         | M10       | 18             |
| 35 - 95                 | 35 - 95                                 | 20                         | M10       | 18             |


#### **TYPICAL ATTENUATION**




### **MECHANICAL DIMENSIONS mm**

| FIN1900G | A   | В   | ۷  | V1 | F | H   | I.  | L  | N  | d   | Weight<br>Kg. | Case |
|----------|-----|-----|----|----|---|-----|-----|----|----|-----|---------------|------|
| .006.M   | 140 | 50  | 19 | 15 | 6 | 226 | 200 | 7  | 28 | M6  | 1.7           | 1    |
| .012.M   | 140 | 50  | 19 | 15 | 6 | 226 | 200 | 7  | 28 | M6  | 1.7           | 1    |
| .016.M   | 177 | 60  | 19 | 15 | 6 | 267 | 237 | 8  | 34 | M6  | 1.7           | 1    |
| .025.M   | 177 | 60  | 19 | 15 | 6 | 267 | 237 | 8  | 34 | M6  | 2.3           | 1    |
| .032.M   | 177 | 60  | 19 | 15 | 6 | 267 | 237 | 8  | 34 | M6  | 2.3           | 1    |
| .042.M   | 177 | 70  | 19 | 25 | 6 | 295 | 265 | 8  | 44 | M6  | 3.4           | 1    |
| .055.M   | 177 | 70  | 19 | 33 | 6 | 295 | 265 | 8  | 44 | M6  | 3.5           | 1    |
| .070.M   | 205 | 80  | 28 | 38 | 8 | 390 | 340 | 12 | 53 | M10 | 6             | 1    |
| .080.M   | 205 | 80  | 28 | 38 | 8 | 390 | 340 | 12 | 53 | M10 | 6             | 1    |
| .100.M   | 205 | 80  | 28 | 43 | 8 | 390 | 340 | 12 | 53 | M10 | 7.1           | 1    |
| .115.M   | 205 | 80  | 28 | 43 | 8 | 390 | 340 | 12 | 53 | M10 | 7.1           | 1    |
| .150.M   | 220 | 105 | 28 | 50 | 8 | 420 | 370 | 12 | 78 | M10 | 8.5           | 1    |
| .200.M   | 220 | 105 | 28 | 50 | 8 | 420 | 370 | 12 | 78 | M10 | 8.5           | 1    |


CASE 1







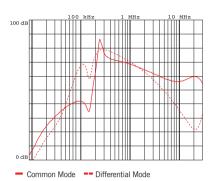
# **FIN1900E**







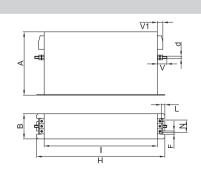
# **FIN1900E**

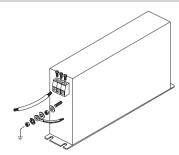

CONNECTIONS

### **ELECTRICAL CHARACTERISTICS**

| FIN1900E | Rated<br>Current<br>40°C | Rated<br>Current<br>50°C | Power Loss<br>(W) |   | ,<br>( |
|----------|--------------------------|--------------------------|-------------------|---|--------|
| .007.M   | 7                        | 6                        | 8                 | ſ | 0      |
| .013.M   | 13                       | 12                       | 12                |   | 0.     |
| .018.M   | 18                       | 16                       | 15                |   | 0      |
| .027.M   | 27                       | 25                       | 20                |   | 0.     |
| .034.M   | 34                       | 32                       | 32                |   | 0      |
| .040.M   | 40                       | 36                       | 23                |   | 0.     |
| .055.M   | 55                       | 50                       | 42                |   | 0      |
| .070.M   | 70                       | 64                       | 55                |   | 0.     |
| .100.M   | 100                      | 90                       | 60                |   | Z      |
| .110.M   | 110                      | 100                      | 90                |   | Z      |
| .130.M   | 130                      | 120                      | 98                |   | 1      |
| .150.M   | 150                      | 135                      | 103               |   | 1      |
| .200.M   | 200                      | 180                      | 115               |   | 3      |
| .230.M   | 230                      | 210                      | 120               |   | 3      |

|   |                                      | LINE                                    |                            | F         | PE             |
|---|--------------------------------------|-----------------------------------------|----------------------------|-----------|----------------|
| 5 | Solid<br>Cable<br>(mm <sup>2</sup> ) | Stranded<br>Cable<br>(mm <sup>2</sup> ) | Terminal<br>Torque<br>(Nm) | d<br>(mm) | Torque<br>(Nm) |
|   | 0.2 - 10                             | 0.2 - 6                                 | 1.2                        | M6        | 6              |
|   | 0.2 - 10                             | 0.2 - 6                                 | 1.2                        | M6        | 6              |
|   | 0.2 - 10                             | 0.2 - 6                                 | 1.2                        | M6        | 6              |
|   | 0.2 - 10                             | 0.2 - 6                                 | 1.2                        | M6        | 6              |
|   | 0.2 - 10                             | 0.2 - 6                                 | 1.2                        | M6        | 6              |
|   | 0.2 - 10                             | 0.2 - 6                                 | 1.2                        | M6        | 6              |
|   | 0.5 - 16                             | 0.5 - 10                                | 1.8                        | M6        | 6              |
|   | 0.5 - 16                             | 0.5 - 10                                | 1.8                        | M6        | 6              |
|   | 4 - 25                               | 6 - 35                                  | 4.5                        | M10       | 18             |
|   | 4 - 25                               | 6 - 35                                  | 4.5                        | M10       | 18             |
|   | 10 - 50                              | 10 - 50                                 | 4                          | M10       | 18             |
|   | 10 - 50                              | 10 - 50                                 | 4                          | M10       | 18             |
|   | 35 - 95                              | 35 - 95                                 | 20                         | M10       | 18             |
|   | 35 - 95                              | 35 - 95                                 | 20                         | M10       | 18             |

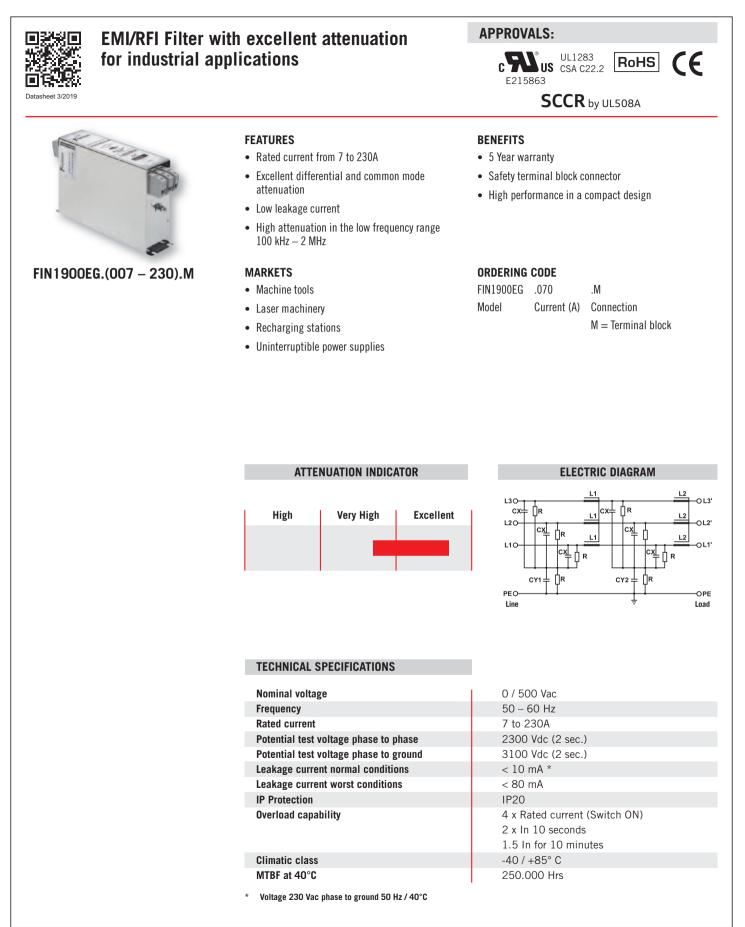

#### **TYPICAL ATTENUATION**




#### **MECHANICAL DIMENSIONS mm**

|          |     |     | M    | 114 |   |     |     |    |    |     | Weight        | 0    |
|----------|-----|-----|------|-----|---|-----|-----|----|----|-----|---------------|------|
| FIN1900E | A   | B   | V    | V1  | F | H   |     | L  | N  | d   | Weight<br>Kg. | Case |
| .007.M   | 140 | 50  | 19   | 15  | 6 | 226 | 200 | 7  | 28 | M6  | 1.7           | 1    |
| .013.M   | 140 | 50  | 19   | 15  | 6 | 226 | 200 | 7  | 28 | M6  | 1.7           | 1    |
| .018.M   | 140 | 50  | 19   | 15  | 6 | 226 | 200 | 7  | 28 | M6  | 1.7           | 1    |
| .027.M   | 140 | 50  | 19   | 15  | 6 | 226 | 200 | 7  | 28 | M6  | 1.7           | 1    |
| .034.M   | 140 | 50  | 19   | 15  | 6 | 226 | 200 | 7  | 28 | M6  | 1.7           | 1    |
| .040.M   | 140 | 50  | 19   | 15  | 6 | 226 | 200 | 7  | 28 | M6  | 1.7           | 1    |
| .055.M   | 177 | 70  | 19   | 25  | 6 | 295 | 265 | 8  | 44 | M6  | 3.7           | 1    |
| .070.M   | 177 | 70  | 19   | 33  | 6 | 295 | 265 | 8  | 44 | M6  | 5.2           | 1    |
| .100.M   | 205 | 80  | 28.5 | 38  | 8 | 390 | 340 | 12 | 53 | M10 | 6.5           | 1    |
| .110.M   | 205 | 80  | 28.5 | 38  | 8 | 390 | 340 | 12 | 53 | M10 | 6.5           | 1    |
| .130.M   | 205 | 80  | 28.5 | 43  | 8 | 390 | 340 | 12 | 53 | M10 | 7.1           | 1    |
| .150.M   | 205 | 80  | 28.5 | 43  | 8 | 390 | 340 | 12 | 53 | M10 | 7.1           | 1    |
| .200.M   | 220 | 105 | 28.5 | 50  | 8 | 420 | 370 | 12 | 78 | M10 | 8             | 1    |
| .230.M   | 220 | 105 | 28.5 | 50  | 8 | 420 | 370 | 12 | 78 | M10 | 8             | 1    |

CASE 1









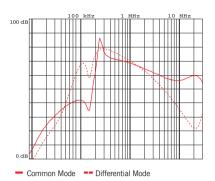

# FIN1900EG







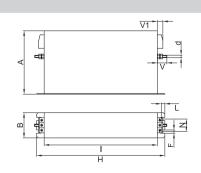
# FIN1900EG

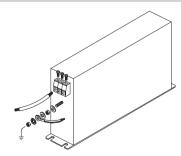

CONNECTIONS

### **ELECTRICAL CHARACTERISTICS**

| FIN1900EG | Rated<br>Current<br>40°C | Rated<br>Current<br>50°C | Power Loss<br>(W) |   |
|-----------|--------------------------|--------------------------|-------------------|---|
| .007.M    | 7                        | 6                        | 8                 | 0 |
| .013.M    | 13                       | 12                       | 12                | 0 |
| .018.M    | 18                       | 16                       | 15                | 0 |
| .027.M    | 27                       | 25                       | 20                | 0 |
| .034.M    | 34                       | 32                       | 32                | 0 |
| .040.M    | 40                       | 36                       | 23                | 0 |
| .055.M    | 55                       | 50                       | 42                | 0 |
| .070.M    | 70                       | 64                       | 55                | 0 |
| .100.M    | 100                      | 90                       | 60                |   |
| .110.M    | 110                      | 100                      | 90                |   |
| .130.M    | 130                      | 120                      | 98                | 1 |
| .150.M    | 150                      | 135                      | 103               | 1 |
| .200.M    | 200                      | 180                      | 115               | 3 |
| .230.M    | 230                      | 210                      | 120               | 3 |

|   |                         | LINE                                    |                            | F         | ΡE             |
|---|-------------------------|-----------------------------------------|----------------------------|-----------|----------------|
| 5 | Solid<br>Cable<br>(mm²) | Stranded<br>Cable<br>(mm <sup>2</sup> ) | Terminal<br>Torque<br>(Nm) | d<br>(mm) | Torque<br>(Nm) |
|   | 0.2 - 10                | 0.2 - 6                                 | 1.2                        | M6        | 6              |
|   | 0.2 - 10                | 0.2 - 6                                 | 1.2                        | M6        | 6              |
|   | 0.2 - 10                | 0.2 - 6                                 | 1.2                        | M6        | 6              |
|   | 0.2 - 10                | 0.2 - 6                                 | 1.2                        | M6        | 6              |
|   | 0.2 - 10                | 0.2 - 6                                 | 1.2                        | M6        | 6              |
|   | 0.2 - 10                | 0.2 - 6                                 | 1.2                        | M6        | 6              |
|   | 0.5 - 16                | 0.5 - 10                                | 1.8                        | M6        | 6              |
|   | 0.5 - 16                | 0.5 - 10                                | 1.8                        | M6        | 6              |
|   | 4 - 25                  | 6 - 35                                  | 4.5                        | M10       | 18             |
|   | 4 - 25                  | 6 - 35                                  | 4.5                        | M10       | 18             |
|   | 10 - 50                 | 10 - 50                                 | 4                          | M10       | 18             |
|   | 10 - 50                 | 10 - 50                                 | 4                          | M10       | 18             |
|   | 35 - 95                 | 35 - 95                                 | 20                         | M10       | 18             |
|   | 35 - 95                 | 35 - 95                                 | 20                         | M10       | 18             |


#### **TYPICAL ATTENUATION**




#### **MECHANICAL DIMENSIONS mm**

| FIN1900EG | A   | В   | V    | V1  | F        | Н   |     | 1          | N  | d   | Weight<br>Kg. | Case |
|-----------|-----|-----|------|-----|----------|-----|-----|------------|----|-----|---------------|------|
| TINTSOOLU | A   | U   | Y    | V I | <b>.</b> |     | •   | - <b>-</b> | N  | u   | Kg.           | 0030 |
| .007.M    | 140 | 50  | 19   | 15  | 6        | 226 | 200 | 7          | 28 | M6  | 1.7           | 1    |
| .013.M    | 140 | 50  | 19   | 15  | 6        | 226 | 200 | 7          | 28 | M6  | 1.7           | 1    |
| .018.M    | 140 | 50  | 19   | 15  | 6        | 226 | 200 | 7          | 28 | M6  | 1.7           | 1    |
| .027.M    | 140 | 50  | 19   | 15  | 6        | 226 | 200 | 7          | 28 | M6  | 1.7           | 1    |
| .034.M    | 140 | 50  | 19   | 15  | 6        | 226 | 200 | 7          | 28 | M6  | 1.7           | 1    |
| .040.M    | 140 | 50  | 19   | 15  | 6        | 226 | 200 | 7          | 28 | M6  | 1.7           | 1    |
| .055.M    | 177 | 70  | 19   | 25  | 6        | 295 | 265 | 8          | 44 | M6  | 3.7           | 1    |
| .070.M    | 177 | 70  | 19   | 33  | 6        | 295 | 265 | 8          | 44 | M6  | 5.2           | 1    |
| .100.M    | 205 | 80  | 28.5 | 38  | 8        | 390 | 340 | 12         | 53 | M10 | 6.5           | 1    |
| .110.M    | 205 | 80  | 28.5 | 38  | 8        | 390 | 340 | 12         | 53 | M10 | 6.5           | 1    |
| .130.M    | 205 | 80  | 28.5 | 43  | 8        | 390 | 340 | 12         | 53 | M10 | 7.1           | 1    |
| .150.M    | 205 | 80  | 28.5 | 43  | 8        | 390 | 340 | 12         | 53 | M10 | 7.1           | 1    |
| .200.M    | 220 | 105 | 28.5 | 50  | 8        | 420 | 370 | 12         | 78 | M10 | 8             | 1    |
| .230.M    | 220 | 105 | 28.5 | 50  | 8        | 420 | 370 | 12         | 78 | M10 | 8             | 1    |

CASE 1









| 寝泉回 EMI/RFI Filter v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | vith excellent attenuation             | APPROVALS:                                                                                                                                                                                                                          |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| for industrial a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        | CRUS UL1283<br>CSA C22.2 RoHS (E                                                                                                                                                                                                    |  |  |  |  |  |
| sheet 3/2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                        | SCCR by UL508A                                                                                                                                                                                                                      |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FEATURES                               | BENEFITS                                                                                                                                                                                                                            |  |  |  |  |  |
| and the second s | Rated current from 42 to 200A          | • 5 Year warranty                                                                                                                                                                                                                   |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Excellent differential and common mode | Safety terminal block connector                                                                                                                                                                                                     |  |  |  |  |  |
| and the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | attenuation                            |                                                                                                                                                                                                                                     |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Low leakage current                    | Helps pass immunity and emission tests for the<br>IEC61000-6-2 and IEC61000-6-4 Standards                                                                                                                                           |  |  |  |  |  |
| IN1900S.(042 – 200).M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MARKETS                                | ORDERING CODE                                                                                                                                                                                                                       |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | • CNC machinery                        | FIN1900S .055 .M                                                                                                                                                                                                                    |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Multiple axis applications             | Model Current (A) Connection                                                                                                                                                                                                        |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Recharging stations                    | M = Terminal block                                                                                                                                                                                                                  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Welding systems                        |                                                                                                                                                                                                                                     |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                                                                                                                                                                                                                     |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ATTENUATION INDICATOR                  | ELECTRIC DIAGRAM                                                                                                                                                                                                                    |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                                                                                                                                                                                                                     |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | High Very High Excellent               | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                               |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | $\begin{array}{c} \downarrow \downarrow$ |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | -<br>Line Loa                                                                                                                                                                                                                       |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                                                                                                                                                                                                                     |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TECHNICAL SPECIFICATIONS               |                                                                                                                                                                                                                                     |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Nominal voltage                        | 0 / 600 Vac                                                                                                                                                                                                                         |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Frequency                              | 50 – 60 Hz                                                                                                                                                                                                                          |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Rated current                          | 42 to 200A                                                                                                                                                                                                                          |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Potential test voltage phase to phase  | 2400 Vdc (2 sec.)                                                                                                                                                                                                                   |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Potential test voltage phase to ground | 3200 Vdc (2 sec.)                                                                                                                                                                                                                   |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Leakage current normal conditions      | < 15 mA *                                                                                                                                                                                                                           |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Leakage current worst conditions       | < 150 mA                                                                                                                                                                                                                            |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IP Protection                          | IP20<br>4 x Rated current (Switch ON)                                                                                                                                                                                               |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Overload capability                    | 2 x In 10 seconds                                                                                                                                                                                                                   |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | 1.5 In for 10 minutes                                                                                                                                                                                                               |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Climatic class                         | 1.5 In for 10 minutes<br>-40 / +85° C                                                                                                                                                                                               |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Climatic class<br>MTBF at 40°C         | 1.5 In for 10 minutes<br>-40 / +85° C<br>250.000 Hrs                                                                                                                                                                                |  |  |  |  |  |





# **FIN1900S**

### **ELECTRICAL CHARACTERISTICS**

| FIN1900S | Rated<br>Current<br>40°C | Rated<br>Current<br>50°C | Power Loss<br>(W) |
|----------|--------------------------|--------------------------|-------------------|
| .042.M   | 50                       | 42                       | 32                |
| .055.M   | 63                       | 55                       | 37                |
| .070.M   | 80                       | 70                       | 52                |
| .080.M   | 90                       | 80                       | 60                |
| .100.M   | 110                      | 100                      | 92                |
| .115.M   | 130                      | 115                      | 101               |
| .150.M   | 175                      | 150                      | 115               |
| .200.M   | 230                      | 200                      | 120               |

#### CONNECTIONS LINE Solid Cable Stranded Terminal

Cable

(mm<sup>2</sup>)

0.5 - 10

0.5 - 10

6 - 35

6 - 35

10 - 50

10 - 50

35 - 95

35 - 95

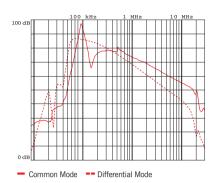
(mm<sup>2</sup>)

0.5 - 16

0.5 - 16

4 - 25

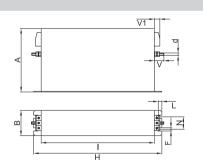
4 - 25


10 - 50

10 - 50

35 - 95

35 - 95


### **TYPICAL ATTENUATION**



### **MECHANICAL DIMENSIONS mm**

| FIN1900S | A   | В   | V  | V1 | F | H   | I.  | L  | N  | d   | Weight<br>Kg. | Case |
|----------|-----|-----|----|----|---|-----|-----|----|----|-----|---------------|------|
| .042.M   | 177 | 70  | 19 | 25 | 6 | 295 | 265 | 8  | 44 | M6  | 3.4           | 1    |
| .055.M   | 177 | 70  | 19 | 33 | 6 | 295 | 265 | 8  | 44 | M6  | 3.5           | 1    |
| .070.M   | 205 | 80  | 28 | 38 | 8 | 390 | 340 | 12 | 53 | M10 | 6             | 1    |
| .080.M   | 205 | 80  | 28 | 38 | 8 | 390 | 340 | 12 | 53 | M10 | 6             | 1    |
| .100.M   | 205 | 80  | 28 | 43 | 8 | 390 | 340 | 12 | 53 | M10 | 7.1           | 1    |
| .115.M   | 205 | 80  | 28 | 43 | 8 | 390 | 340 | 12 | 53 | M10 | 7.1           | 1    |
| .150.M   | 220 | 105 | 28 | 50 | 8 | 420 | 370 | 12 | 78 | M10 | 8             | 1    |
| .200.M   | 220 | 105 | 28 | 50 | 8 | 420 | 370 | 12 | 78 | M10 | 8             | 1    |

CASE 1



#### ASSEMBLY CONNECTION "M"

Torque (Nm)

6

6

18

18

18

18

18

18

d

(mm)

M6

M6

M10

M10

M10

M10

M10

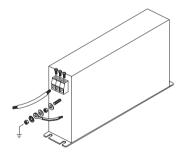
M10

Torque (Nm)

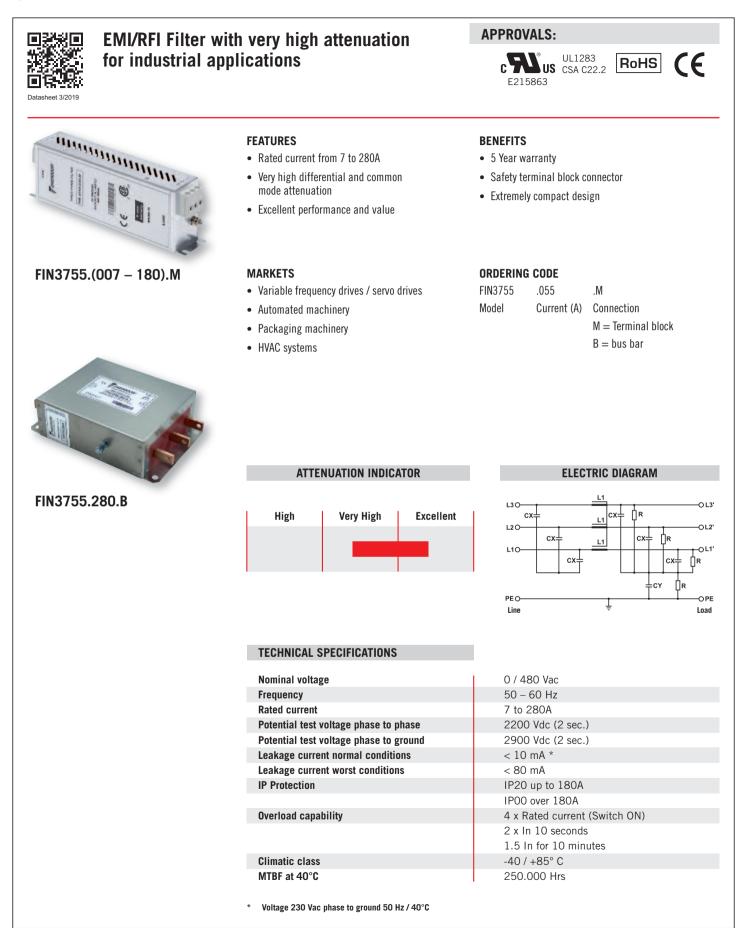
1.8

1.8

4.5


4.5

4


4

20

20











### **ELECTRICAL CHARACTERISTICS**

| FIN3755 | Rated<br>Current<br>40°C | Rated<br>Current<br>50°C | Power Loss<br>(W) |
|---------|--------------------------|--------------------------|-------------------|
| .007.M  | 8                        | 7                        | 3                 |
| .016.M  | 18                       | 16                       | 4                 |
| .030.M  | 32                       | 30                       | 11                |
| .042.M  | 45                       | 42                       | 15                |
| .055.M  | 58                       | 55                       | 19                |
| .075.M  | 80                       | 75                       | 25                |
| .100.M  | 105                      | 100                      | 42                |
| .150.M  | 160                      | 150                      | 52                |
| .180.M  | 190                      | 180                      | 61                |
| FIN3755 | Rated<br>Current<br>40°C | Rated<br>Current<br>50°C | Power Loss<br>(W) |
| .280.B  | 280                      | 250                      | 75                |

#### **CONNECTIONS** LINE Solid Stranded Terminal Torque (Nm)

Cable

(mm<sup>2</sup>)

0.2 - 4

0.2 - 4

0.2 - 6

0.2 - 6

0.5 - 10

6 - 35

6 - 35

10 - 50

35 - 95

Torque (Nm)

14

LINE

0.5

0.5

1.2

1.2

1.8

4.5

4.5

20

20

Cable

(mm<sup>2</sup>)

0.2 - 4

0.2 - 4

0.2 - 10

0.2 - 10

0.5 - 16

4 - 25

4 - 25

10 - 50

35 - 95

(mm)

M8

d

(mm)

Μ5

Μ5

M6

M6

M6

M6

M10

M10

M10

d 1 (Nm)

M8

PE

Torque

(Nm)

4

4

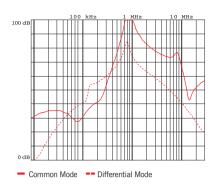
6

6

6

6

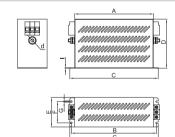
18

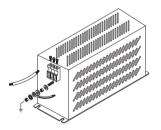

18

18

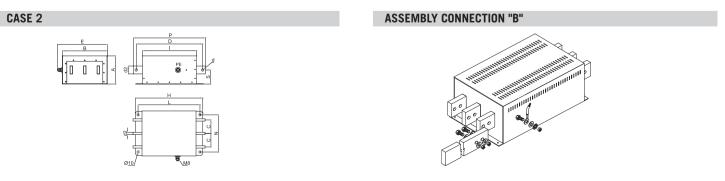
Torque (Nm)

14


### **TYPICAL ATTENUATION**

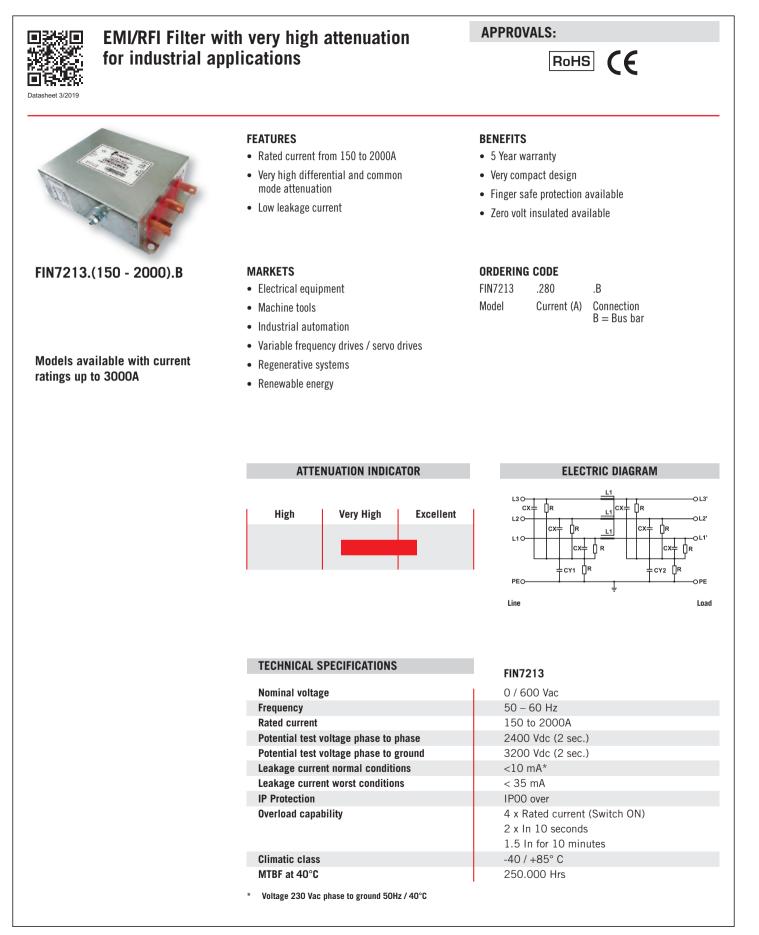



#### **MECHANICAL DIMENSIONS mm**


| FIN3755 | A   | В   | C   | D     | E   | F   | G   | d   | I.  | Weight<br>Kg. | Case |
|---------|-----|-----|-----|-------|-----|-----|-----|-----|-----|---------------|------|
| .007.M  | 160 | 180 | 190 | 78    | 48  | 20  | 4   | M5  | 1   | 1.1           | 1    |
| .016.M  | 220 | 235 | 250 | 85    | 48  | 25  | 5   | M5  | 1   | 1.5           | 1    |
| .030.M  | 240 | 255 | 270 | 85    | 50  | 30  | 5   | M6  | 1   | 2.1           | 1    |
| .042.M  | 280 | 295 | 310 | 85    | 50  | 30  | 5   | M6  | 1   | 2.7           | 1    |
| .055.M  | 220 | 235 | 250 | 100   | 90  | 60  | 5   | M6  | 1   | 3.1           | 1    |
| .075.M  | 240 | 255 | 270 | 135   | 85  | 60  | 5   | M6  | 1.5 | 3.6           | 1    |
| .100.M  | 240 | 255 | 270 | 155   | 90  | 65  | 6   | M10 | 1.5 | 4.2           | 1    |
| .150.M  | 300 | 315 | 330 | 156.5 | 90  | 65  | 6   | M10 | 1.5 | 6             | 1    |
| .180.M  | 350 | 365 | 380 | 170   | 125 | 102 | 6.5 | M10 | 1.5 | 7.5           | 1    |

#### CASE 1






| FIN3755 | A  | В   | C  | D   | E   | H   | I.  | L   | N   | Р   | S  | d | d2   | Weight<br>Kg. | Case |
|---------|----|-----|----|-----|-----|-----|-----|-----|-----|-----|----|---|------|---------------|------|
| .280.B  | 86 | 200 | 60 | 300 | 277 | 300 | 240 | 275 | 165 | 320 | 37 | 9 | 20x6 | 5.2           | 2    |

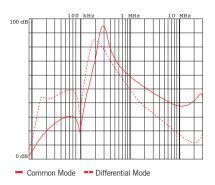













CONNECTIONS

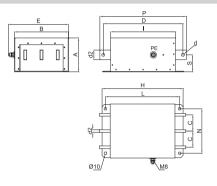
### **ELECTRICAL CHARACTERISTICS**

|         |                          |                          |                   | L         | NE             |            | PE             |
|---------|--------------------------|--------------------------|-------------------|-----------|----------------|------------|----------------|
| FIN7213 | Rated<br>Current<br>40°C | Rated<br>Current<br>50°C | Power Loss<br>(W) | d<br>(mm) | Torque<br>(Nm) | d1<br>(mm) | Torque<br>(Nm) |
| .150.B  | 150                      | 135                      | 65                | M8        | 14             | M8         | 14             |
| .200.B  | 200                      | 180                      | 70                | M8        | 14             | M8         | 14             |
| .280.B  | 280                      | 250                      | 75                | M8        | 14             | M8         | 14             |
| .320.B  | 320                      | 290                      | 80                | M8        | 14             | M8         | 14             |
| .360.B  | 360                      | 325                      | 95                | M8        | 14             | M8         | 14             |
| .400.B  | 400                      | 360                      | 110               | M8        | 14             | M8         | 14             |
| .500.B  | 500                      | 450                      | 102               | M8        | 14             | M8         | 14             |
| .600.B  | 600                      | 540                      | 95                | M10       | 18             | M8         | 14             |
| .750.B  | 750                      | 675                      | 80                | M10       | 18             | M8         | 14             |
| .800.B  | 800                      | 720                      | 82                | M10       | 18             | M8         | 14             |
| .900.B  | 900                      | 810                      | 90                | M10       | 18             | M8         | 14             |
| .1000.B | 1000                     | 900                      | 100               | M10       | 18             | M8         | 14             |
| .1250.B | 1250                     | 1120                     | 105               | M10       | 18             | M8         | 14             |
| .1500.B | 1500                     | 1350                     | 110               | M10       | 18             | M8         | 14             |
| .1750.B | 1750                     | 1500                     | 125               | M10       | 18             | M8         | 14             |
| .2000.B | 2000                     | 1750                     | 132               | M10       | 18             | M8         | 14             |

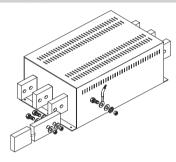
### **TYPICAL ATTENUATION**



Typical attenuation 150A - 2000A



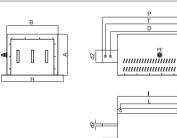


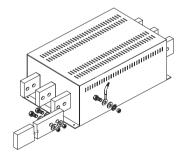


### **MECHANICAL DIMENSIONS mm**

| FIN7213 | A   | В   | C  | D   | E   | H   | I   | L   | N   | Р   | S    | d  | d2    | Weight<br>Kg. | Case |
|---------|-----|-----|----|-----|-----|-----|-----|-----|-----|-----|------|----|-------|---------------|------|
| .150.B  | 86  | 200 | 60 | 300 | 227 | 300 | 240 | 275 | 165 | 320 | 37   | 9  | 20x6  | 5             | 1    |
| .200.B  | 86  | 200 | 60 | 300 | 227 | 300 | 240 | 275 | 165 | 320 | 37   | 9  | 20x6  | 5.1           | 1    |
| .280.B  | 86  | 200 | 60 | 300 | 227 | 300 | 240 | 275 | 165 | 320 | 37   | 9  | 20x6  | 5.2           | 1    |
| .320.B  | 86  | 200 | 60 | 300 | 227 | 300 | 240 | 275 | 165 | 320 | 37   | 9  | 20x6  | 5.2           | 1    |
| .360.B  | 86  | 200 | 60 | 300 | 227 | 300 | 240 | 275 | 165 | 320 | 37   | 9  | 20x6  | 5.3           | 1    |
| .400.B  | 86  | 200 | 60 | 300 | 227 | 300 | 240 | 275 | 165 | 320 | 37   | 9  | 20x6  | 5.3           | 1    |
| .500.B  | 125 | 200 | 60 | 295 | 222 | 300 | 240 | 275 | 200 | 320 | 62.5 | 11 | 35x10 | 8.2           | 2    |
| .600.B  | 125 | 200 | 60 | 295 | 222 | 300 | 240 | 275 | 200 | 320 | 62.5 | 11 | 35x10 | 8.4           | 2    |
| .750.B  | 125 | 200 | 60 | 295 | 222 | 300 | 240 | 275 | 200 | 320 | 62.5 | 11 | 35x10 | 8.5           | 2    |

### CASE 1, 2




### ASSEMBLY CONNECTION "B"



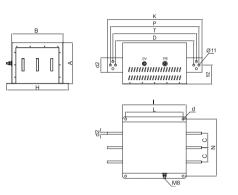

#### **MECHANICAL DIMENSIONS mm**

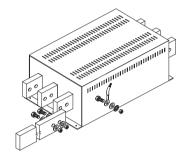
| FIN7213 | A   | В   | C  | D   | E   | H   | T   | L   | N   | Р   | S | T   | d  | d2    | Weight<br>Kg. | Case |
|---------|-----|-----|----|-----|-----|-----|-----|-----|-----|-----|---|-----|----|-------|---------------|------|
| .800.B  | 200 | 250 | 70 | 380 | 277 | 300 | 310 | 280 | 278 | 460 | - | 430 | 11 | 50x10 | 8.4           | 3    |
| .900.B  | 200 | 250 | 70 | 380 | 277 | 300 | 310 | 280 | 278 | 460 | - | 430 | 11 | 50x10 | 8.4           | 3    |
| .1000.B | 200 | 250 | 70 | 380 | 277 | 300 | 310 | 280 | 278 | 460 | - | 430 | 11 | 60x10 | 20.2          | 4    |
| .1250.B | 200 | 250 | 70 | 380 | 277 | 300 | 310 | 280 | 278 | 460 | - | 430 | 11 | 60x10 | 20.5          | 4    |

### CASE 3, 4









Three Phase Filter

### **MECHANICAL DIMENSIONS mm**

| FIN7213 | A   | В   | C  | D   | H   | I   | L   | N   | Р   | K   | T   | d  | d2    | Weight<br>Kg. | Case |
|---------|-----|-----|----|-----|-----|-----|-----|-----|-----|-----|-----|----|-------|---------------|------|
| .1500.B | 200 | 250 | 70 | 380 | 300 | 310 | 280 | 278 | 460 | 430 | 405 | 11 | 70x10 | 22            | 5    |
| .1750.B | 200 | 250 | 70 | 380 | 300 | 310 | 280 | 278 | 460 | 430 | 405 | 11 | 80x10 | 25            | 5    |
| .2000.B | 200 | 250 | 70 | 380 | 300 | 310 | 280 | 278 | 460 | 430 | 405 | 11 | 80x10 | 25            | 5    |

### CASE 5







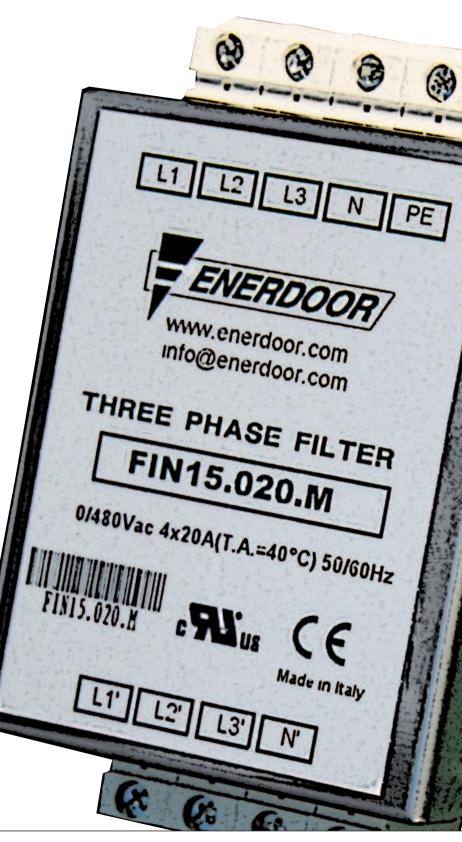


|                              |                      |                   |         | COI             | NECT   | ORS   |                      |              | FEAT                  | URES                      |               |                       | A               | PPLIC      | ATION            | S       |                |
|------------------------------|----------------------|-------------------|---------|-----------------|--------|-------|----------------------|--------------|-----------------------|---------------------------|---------------|-----------------------|-----------------|------------|------------------|---------|----------------|
| Filter<br>Selection<br>Guide | Description          | Current Range (A) | Voltage | Terminal Blocks | Screws | s Bar | Regenerative Systems | N Rail Mount | ng Cable Applications | Low Frequency Attenuation | ok Case Style | y Low Leakage Current | Multiple Drives | Automation | Renewable Energy | Medical | Approval       |
| Three Phase + Neutral        | De                   | Cu                | Vo      | Ter             | Sci    | Bus   | Reg                  | DIN          | Long                  | Lov                       | Book          | Very                  | Σ               | Aut        | Rei              | Me      | Api            |
| FIN15                        | 3-phase plus neutral | 3-20              | 0-480   | ×               |        |       |                      | ×            |                       |                           |               | ×                     |                 |            |                  | ×       | c <b>RL</b> us |
| FIN1240                      | 3-phase plus neutral | 5-2000            | 0-480   | ×               | ×      | ×     | ×                    |              | ×                     | ×                         |               | ×                     | ×               |            | ×                |         | c <b>RL</b> us |
| FIN1740                      | 3-phase plus neutral | 6-200             | 0-600   | ×               |        |       | ×                    |              | ×                     |                           | ×             | ×                     |                 | ×          |                  |         | c <b>RL</b> us |
| FIN1740ESM                   | 3-phase plus neutral | 10-180            | 0-500   | ×               |        |       |                      |              |                       |                           |               | ×                     |                 | ×          |                  | ×       | c <b>W</b> us  |
| FIN1940                      | 3-phase plus neutral | 6-200             | 0-600   | ×               |        |       | ×                    |              | ×                     |                           | ×             |                       | ×               |            | ×                |         | c <b>W</b> us  |
| FIN1940E                     | 3-phase plus neutral | 18-200            | 0-500   | ×               |        |       |                      |              |                       | ×                         |               | ×                     | ×               |            | ×                |         | c <b>W</b> us  |



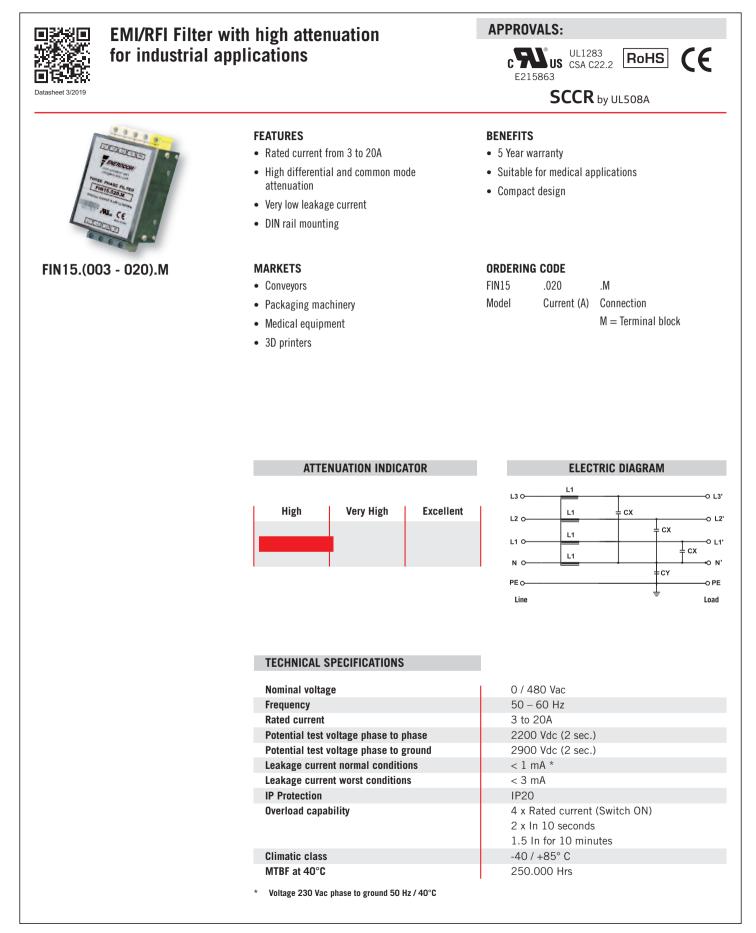
# Three Phase + Neutral Filters




Enerdoor three phase plus neutral series provides high attenuation in a compact case with low leakage current and is suitable for a broad range of industries.

This series carries CE and UL approvals and offers a current range from 3 to 2000A with nominal voltage up to 600 Vac.

This line offers terminal block, screw and bus bar connectors. Features include: finger safe protection for screw and bus bar connections, and DIN rail mounting for fast and easy installation within the enclosure. Customized solutions are available to satisfy various application requirements.


# Three phase + neutral applications include:

- Conveyors
- Packaging machinery
- Medical equipment
- 3D printers
- Semiconductor machinery
- Automated machinery
- Woodworking machinery
- Multiple drive applications
- Laser equipment
- CNC machinery





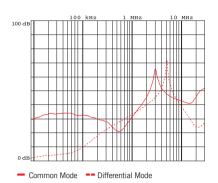








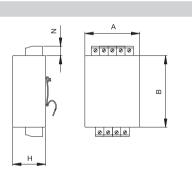
Three Phase + Neutral Filter

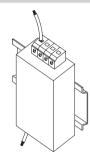

### **ELECTRICAL CHARACTERISTICS**

| FIN15  | Rated<br>Current<br>40°C | Rated<br>Current<br>50°C | Power Loss<br>(W) |
|--------|--------------------------|--------------------------|-------------------|
| .003.M | 3                        | 2                        | 1.5               |
| .006.M | 6                        | 5                        | 2.1               |
| .010.M | 10                       | 8                        | 2.8               |
| .016.M | 16                       | 14                       | 3.2               |
| .020.M | 20                       | 17                       | 4                 |

#### CONNECTIONS

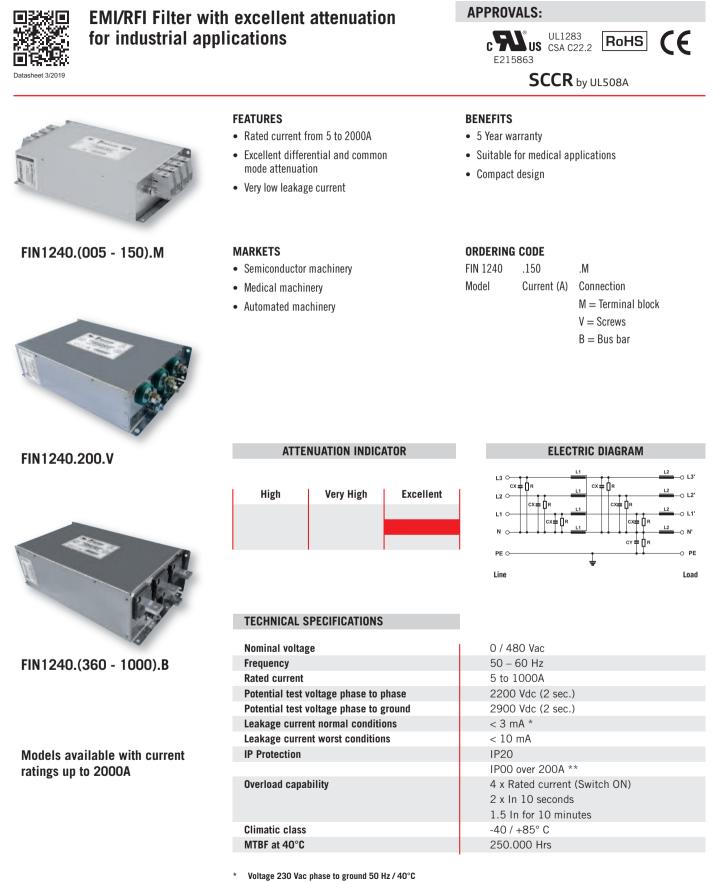
|              |                                      | LINE                       |                               |                |  |  |  |  |  |  |  |
|--------------|--------------------------------------|----------------------------|-------------------------------|----------------|--|--|--|--|--|--|--|
| r Loss<br>V) | Solid<br>Cable<br>(mm <sup>2</sup> ) | Stranded<br>Cable<br>(mm²) | Terminal Block<br>Torque (Nm) | Torque<br>(Nm) |  |  |  |  |  |  |  |
| .5           | 0.2 - 6                              | 0.2 - 4                    | 0.8                           | 0.8            |  |  |  |  |  |  |  |
| .1           | 0.2 - 6                              | 0.2 - 4                    | 0.8                           | 0.8            |  |  |  |  |  |  |  |
| .8           | 0.2 - 6                              | 0.2 - 4                    | 0.8                           | 0.8            |  |  |  |  |  |  |  |
| .2           | 0.2 - 6                              | 0.5 - 4                    | 0.8                           | 0.8            |  |  |  |  |  |  |  |
| 4            | 0.2 - 6                              | 0.5 - 4                    | 0.8                           | 0.8            |  |  |  |  |  |  |  |


#### **TYPICAL ATTENUATION**




#### **MECHANICAL DIMENSIONS mm**

| FIN15  | A  | В  | H  | N  | Weight<br>Kg. | Case |
|--------|----|----|----|----|---------------|------|
| .003.M | 65 | 85 | 39 | 11 | 0.32          | 1    |
| .006.M | 65 | 85 | 39 | 11 | 0.32          | 1    |
| .010.M | 65 | 85 | 39 | 11 | 0.32          | 1    |
| .016.M | 65 | 85 | 39 | 11 | 0.32          | 1    |
| .020.M | 65 | 85 | 39 | 11 | 0.32          | 1    |


CASE 1







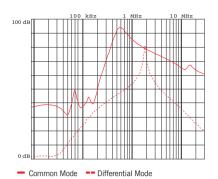
Three Phase + Neutral Filter



Engineered by

FINMOTOR




CONNECTIONS

### **ELECTRICAL CHARACTERISTICS**

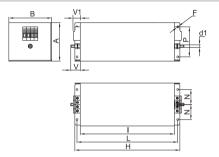
| FIN1240 | Rated<br>Current<br>40°C | Rated<br>Current<br>50°C | Power Loss<br>(W) |
|---------|--------------------------|--------------------------|-------------------|
| .005.M  | 5                        | 4                        | 5                 |
| .010.M  | 10                       | 8                        | 7                 |
| .016.M  | 16                       | 14                       | 14                |
| .030.M  | 30                       | 27                       | 11                |
| .050.M  | 50                       | 46                       | 10                |
| .080.M  | 80                       | 75                       | 35                |
| .100.M  | 100                      | 90                       | 42                |
| .150.M  | 150                      | 140                      | 74                |

|                         | LINE                                    |                            | F          | ΡE             |
|-------------------------|-----------------------------------------|----------------------------|------------|----------------|
| Solid<br>Cable<br>(mm²) | Stranded<br>Cable<br>(mm <sup>2</sup> ) | Terminal<br>Torque<br>(Nm) | d1<br>(mm) | Torque<br>(Nm) |
| 0.2 - 10                | 0.2 - 6                                 | 1.2                        | M4         | 2              |
| 0.2 - 10                | 0.2 - 6                                 | 1.2                        | M4         | 2              |
| 0.2 - 10                | 0.2 - 6                                 | 1.2                        | M5         | 4              |
| 0.2 - 10                | 0.2 - 6                                 | 1.2                        | M5         | 4              |
| 0.5 - 16                | 0.5 - 10                                | 1.8                        | M6         | 6              |
| 4 - 25                  | 6 - 35                                  | 4.5                        | M8         | 14             |
| 4 - 25                  | 6 - 35                                  | 4.5                        | M8         | 14             |
| 10 - 50                 | 10 - 50                                 | 4                          | M10        | 18             |

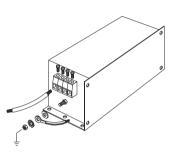
#### TYPICAL ATTENUATION



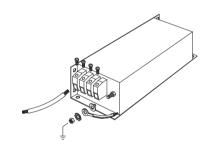
|         |                          |                          |                   | LI        | NE             | PE         |                |  |
|---------|--------------------------|--------------------------|-------------------|-----------|----------------|------------|----------------|--|
| FIN1240 | Rated<br>Current<br>40°C | Rated<br>Current<br>50°C | Power Loss<br>(W) | d<br>(mm) | Torque<br>(Nm) | d1<br>(mm) | Torque<br>(Nm) |  |
| .200.V  | 200                      | 190                      | 75                | M10       | 18             | M10        | 18             |  |
| .360.B  | 360                      | 345                      | 96                | M8        | 14             | M10        | 18             |  |
| .500.B  | 500                      | 465                      | 101               | M10       | 25             | M10        | 18             |  |
| .750.B  | 750                      | 710                      | 103               | M12       | 50             | M12        | 20             |  |
| .1000.B | 1000                     | 940                      | 115               | M12       | 50             | M12        | 20             |  |







### **MECHANICAL DIMENSIONS mm**

| FIN1240 | A  | В   | ۷  | V1 | F   | H   | I.  | L   | N    | d1  | Р  | Weight<br>Kg. | Case |
|---------|----|-----|----|----|-----|-----|-----|-----|------|-----|----|---------------|------|
| .005.M  | 58 | 86  | 19 | 11 | 4.5 | 186 | 160 | 176 | 30   | M4  | 40 | 1.5           | 1    |
| .010.M  | 58 | 86  | 19 | 11 | 4.5 | 186 | 160 | 176 | 30   | M4  | 40 | 1.5           | 1    |
| .016.M  | 90 | 100 | 19 | 15 | 4.5 | 246 | 220 | 235 | 35   | M5  | 70 | 2             | 2    |
| .030.M  | 90 | 100 | 19 | 15 | 4.5 | 246 | 220 | 235 | 35   | M5  | 70 | 2.5           | 2    |
| .050.M  | 90 | 100 | 20 | 25 | 4.5 | 246 | 220 | 235 | 35   | M6  | 70 | 3             | 3    |
| .080.M  | 90 | 185 | 25 | 38 | 6.5 | 356 | 320 | 340 | 77.5 | M8  | 70 | 12            | 4    |
| .100.M  | 90 | 185 | 25 | 38 | 6.5 | 356 | 320 | 340 | 77.5 | M8  | 70 | 13            | 4    |
| .150.M  | 90 | 220 | 28 | 42 | 6.5 | 356 | 320 | 340 | 95   | M10 | 70 | 15            | 5    |


### CASE 1, 2, 3



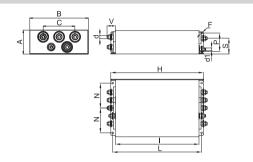
### **ASSEMBLY CONNECTION "M"**



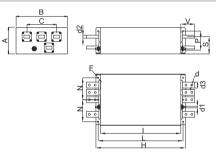
#### ASSEMBLY CONNECTION "M"



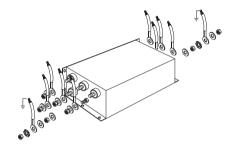
CASE 4, 5

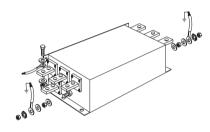






### MECHANICAL DIMENSIONS mm

| FIN1240 | A   | В   | C   | d   | d1  | d2 | d3 | ۷  | F   | H   | I   | L   | N   | Р   | S   | Weight<br>Kg. | Case |
|---------|-----|-----|-----|-----|-----|----|----|----|-----|-----|-----|-----|-----|-----|-----|---------------|------|
| .200.V  | 90  | 220 | 120 | M10 | M10 | -  | -  | 30 | 6.5 | 356 | 320 | 340 | 95  | 70  | 60  | 20            | 6    |
| .360.B  | 130 | 230 | 150 | M8  | M8  | 10 | 25 | 42 | 6.5 | 420 | 380 | 400 | 100 | 100 | 90  | 27            | 7    |
| .500.B  | 130 | 230 | 150 | M8  | M8  | 15 | 30 | 48 | 6.5 | 510 | 450 | 480 | 100 | 100 | 90  | 33.5          | 8    |
| .750.B  | 160 | 250 | 140 | M10 | M10 | 20 | 40 | 94 | 8.5 | 510 | 450 | 480 | 100 | 110 | 110 | 37            | 9    |
| .1000.B | 210 | 350 | 200 | M12 | M12 | 20 | 60 | 97 | 8.5 | 610 | 550 | 580 | 150 | 160 | 147 | 55            | 10   |

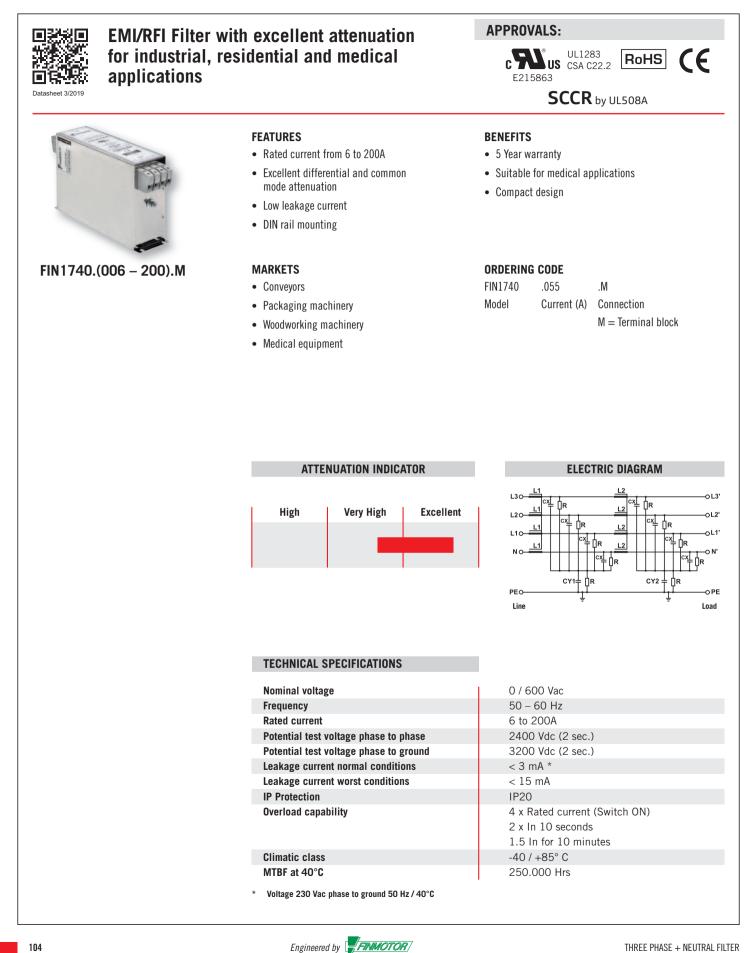

### CASE 6




### CASE 7, 8, 9, 10



### ASSEMBLY CONNECTION "V"







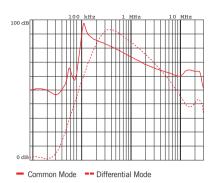



Three Phase + Neutral Filter





CONNECTIONS

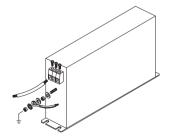

Three Phase + Neutral Filter

### **ELECTRICAL CHARACTERISTICS**

| FIN1740 | Rated<br>Current<br>40°C | Rated<br>Current<br>50°C | Power Loss<br>(W) |
|---------|--------------------------|--------------------------|-------------------|
| .006.M  | 8                        | 6                        | 8                 |
| .012.M  | 14                       | 12                       | 10                |
| .016.M  | 18                       | 16                       | 12                |
| .025.M  | 28                       | 25                       | 15                |
| .032.M  | 35                       | 32                       | 23                |
| .042.M  | 50                       | 42                       | 32                |
| .055.M  | 63                       | 55                       | 37                |
| .070.M  | 80                       | 70                       | 52                |
| .080.M  | 90                       | 80                       | 60                |
| .100.M  | 110                      | 100                      | 92                |
| .115.M  | 130                      | 115                      | 101               |
| .150.M  | 175                      | 150                      | 115               |
| .200.M  | 230                      | 200                      | 120               |

|                         | LINE                                    |                            | F         | PE             |
|-------------------------|-----------------------------------------|----------------------------|-----------|----------------|
| Solid<br>Cable<br>(mm²) | Stranded<br>Cable<br>(mm <sup>2</sup> ) | Terminal<br>Torque<br>(Nm) | d<br>(mm) | Torque<br>(Nm) |
| 0.2 - 10                | 0.2 - 6                                 | 1.2                        | M6        | 6              |
| 0.2 - 10                | 0.2 - 6                                 | 1.2                        | M6        | 6              |
| 0.2 - 10                | 0.2 - 6                                 | 1.2                        | M6        | 6              |
| 0.2 - 10                | 0.2 - 6                                 | 1.2                        | M6        | 6              |
| 0.2 - 10                | 0.2 - 6                                 | 1.2                        | M6        | 6              |
| 0.5 - 16                | 0.5 - 10                                | 1.8                        | M6        | 6              |
| 0.5 - 16                | 0.5 - 10                                | 1.8                        | M6        | 6              |
| 4 - 25                  | 6 - 35                                  | 4.5                        | M10       | 18             |
| 4 - 25                  | 6 - 35                                  | 4.5                        | M10       | 18             |
| 10 - 50                 | 10 - 50                                 | 4                          | M10       | 18             |
| 10 - 50                 | 10 - 50                                 | 4                          | M10       | 18             |
| 35 - 95                 | 35 - 95                                 | 20                         | M10       | 18             |
| 35 - 95                 | 35 - 95                                 | 20                         | M10       | 18             |


### **TYPICAL ATTENUATION**




### **MECHANICAL DIMENSIONS mm**

| FIN1740 | A   | В   | V    | V1 | F | H   | I.  | L  | N   | d   | Weight<br>Kg. | Case |
|---------|-----|-----|------|----|---|-----|-----|----|-----|-----|---------------|------|
| .006.M  | 140 | 60  | 19   | 16 | 6 | 226 | 200 | 7  | 38  | M6  | 1.9           | 1    |
| .012.M  | 140 | 60  | 19   | 16 | 6 | 226 | 200 | 7  | 38  | M6  | 1.9           | 1    |
| .016.M  | 177 | 70  | 19   | 16 | 6 | 267 | 237 | 8  | 44  | M6  | 1.9           | 1    |
| .025.M  | 177 | 70  | 19   | 16 | 6 | 267 | 237 | 8  | 44  | M6  | 2.5           | 1    |
| .032.M  | 177 | 70  | 19   | 16 | 6 | 267 | 237 | 8  | 44  | M6  | 2.5           | 1    |
| .042.M  | 177 | 80  | 19   | 34 | 6 | 295 | 265 | 8  | 54  | M6  | 3.7           | 1    |
| .055.M  | 177 | 80  | 19   | 33 | 6 | 295 | 265 | 8  | 54  | M6  | 3.9           | 1    |
| .070.M  | 205 | 100 | 28.5 | 38 | 8 | 390 | 340 | 12 | 73  | M10 | 6.2           | 1    |
| .080.M  | 205 | 100 | 28.5 | 38 | 8 | 390 | 340 | 12 | 73  | M10 | 6.2           | 1    |
| .100.M  | 205 | 100 | 28.5 | 43 | 8 | 390 | 340 | 12 | 73  | M10 | 7.5           | 1    |
| .115.M  | 205 | 100 | 28.5 | 43 | 8 | 390 | 340 | 12 | 73  | M10 | 7.5           | 1    |
| .150.M  | 220 | 130 | 28.5 | 50 | 8 | 420 | 370 | 12 | 103 | M10 | 9.4           | 1    |
| .200.M  | 220 | 130 | 28.5 | 50 | 8 | 420 | 370 | 12 | 103 | M10 | 9.4           | 1    |


CASE 1





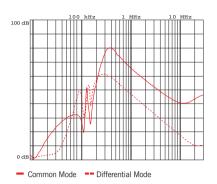


# FIN1740ESM





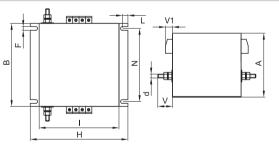
# FIN1740ESM

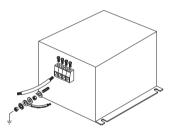

### **ELECTRICAL CHARACTERISTICS**

| FIN1740ESM | Rated<br>Current<br>40°C | Rated<br>Current<br>50°C | Power Loss<br>(W) |
|------------|--------------------------|--------------------------|-------------------|
| .010.M     | 10                       | 9                        | 5                 |
| .018.M     | 18                       | 16                       | 5                 |
| .036.M     | 36                       | 32                       | 18                |
| .072.M     | 72                       | 64                       | 40                |
| .100.M     | 100                      | 90                       | 102               |
| .135.M     | 135                      | 120                      | 96                |
| .180.M     | 180                      | 160                      | 98                |

### CONNECTIONS

|   |                                      | LINE                       |                            | P         | ΡE             |
|---|--------------------------------------|----------------------------|----------------------------|-----------|----------------|
| S | Solid<br>Cable<br>(mm <sup>2</sup> ) | Stranded<br>Cable<br>(mm²) | Terminal<br>Torque<br>(Nm) | d<br>(mm) | Torque<br>(Nm) |
|   | 0.2 - 10                             | 0.2 - 6                    | 1.2                        | M6        | 6              |
|   | 0.2 - 10                             | 0.2 - 6                    | 1.2                        | M6        | 6              |
|   | 0.2 - 10                             | 0.2 - 6                    | 1.2                        | M6        | 6              |
|   | 0.5 - 16                             | 0.5 - 10                   | 1.8                        | M6        | 6              |
|   | 4 - 25                               | 6 - 35                     | 4.5                        | M10       | 18             |
|   | 10 - 50                              | 10 - 50                    | 4                          | M10       | 18             |
|   | 35 - 95                              | 35 - 95                    | 20                         | M10       | 18             |


#### TYPICAL ATTENUATION




### **MECHANICAL DIMENSIONS mm**

| FIN1740ESM | A   | В   | ۷    | V1   | F   | H   | I.  | L   | N  | d   | Weight<br>Kg. | Case |
|------------|-----|-----|------|------|-----|-----|-----|-----|----|-----|---------------|------|
| .010.M     | 100 | 130 | 22.5 | 16   | 6.5 | 153 | 125 | 8.5 | 90 | M6  | 1             | 1    |
| .018.M     | 100 | 130 | 22.5 | 16   | 6.5 | 153 | 125 | 8.5 | 90 | M6  | 1             | 1    |
| .036.M     | 100 | 130 | 22.5 | 16   | 6.5 | 153 | 125 | 8.5 | 90 | M6  | 1.1           | 1    |
| .072.M     | 125 | 118 | 22.5 | 32.5 | 6.5 | 153 | 128 | 8.5 | 50 | M6  | 1.6           | 1    |
| .100.M     | 140 | 180 | 30   | 39   | 6.5 | 170 | 140 | 8.5 | 65 | M10 | 3.4           | 1    |
| .135.M     | 140 | 180 | 30   | 43   | 6.5 | 170 | 140 | 8.5 | 65 | M10 | 4.5           | 1    |
| .180.M     | 160 | 200 | 30   | 51.5 | 6.5 | 170 | 140 | 8.5 | 75 | M10 | 4.8           | 1    |


#### CASE 1





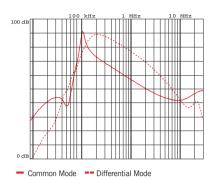








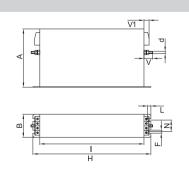
CONNECTIONS


Three Phase + Neutral Filter

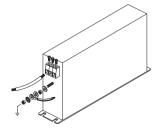
## **ELECTRICAL CHARACTERISTICS**

| FIN1940 | Rated<br>Current<br>40°C | Rated<br>Current<br>50°C | Power Loss<br>(W) |
|---------|--------------------------|--------------------------|-------------------|
| .006.M  | 8                        | 6                        | 8                 |
| .012.M  | 14                       | 12                       | 10                |
| .016.M  | 18                       | 16                       | 12                |
| .025.M  | 28                       | 25                       | 15                |
| .032.M  | 35                       | 32                       | 23                |
| .042.M  | 50                       | 42                       | 32                |
| .055.M  | 63                       | 55                       | 37                |
| .070.M  | 80                       | 70                       | 52                |
| .080.M  | 90                       | 80                       | 60                |
| .100.M  | 110                      | 100                      | 92                |
| .115.M  | 130                      | 115                      | 101               |
| .150.M  | 175                      | 150                      | 115               |
| .200.M  | 230                      | 200                      | 120               |

|                         | LINE                       |                            | F         | ΡE             |
|-------------------------|----------------------------|----------------------------|-----------|----------------|
| Solid<br>Cable<br>(mm²) | Stranded<br>Cable<br>(mm²) | Terminal<br>Torque<br>(Nm) | d<br>(mm) | Torque<br>(Nm) |
| 0.2 - 10                | 0.2 - 6                    | 1.2                        | M6        | 6              |
| 0.2 - 10                | 0.2 - 6                    | 1.2                        | M6        | 6              |
| 0.2 - 10                | 0.2 - 6                    | 1.2                        | M6        | 6              |
| 0.2 - 10                | 0.2 - 6                    | 1.2                        | M6        | 6              |
| 0.2 - 10                | 0.2 - 6                    | 1.2                        | M6        | 6              |
| 0.5 - 16                | 0.5 - 10                   | 1.8                        | M6        | 6              |
| 0.5 - 16                | 0.5 - 10                   | 1.8                        | M6        | 6              |
| 4 - 25                  | 6 - 35                     | 4.5                        | M10       | 18             |
| 4 - 25                  | 6 - 35                     | 4.5                        | M10       | 18             |
| 10 - 50                 | 10 - 50                    | 4                          | M10       | 18             |
| 10 - 50                 | 10 - 50                    | 4                          | M10       | 18             |
| 35 - 95                 | 35 - 95                    | 20                         | M10       | 18             |
| 35 - 95                 | 35 - 95                    | 20                         | M10       | 18             |


#### **TYPICAL ATTENUATION**




#### **MECHANICAL DIMENSIONS mm**

| FIN1940 | A   | В   | V    | V1 | F | H   | I.  | L  | N   | d   | Weight<br>Kg. | Case |
|---------|-----|-----|------|----|---|-----|-----|----|-----|-----|---------------|------|
| .006.M  | 140 | 60  | 19   | 16 | 6 | 226 | 200 | 7  | 38  | M6  | 1.9           | 1    |
| .012.M  | 140 | 60  | 19   | 16 | 6 | 226 | 200 | 7  | 38  | M6  | 1.9           | 1    |
| .016.M  | 177 | 70  | 19   | 16 | 6 | 267 | 237 | 8  | 44  | M6  | 1.9           | 1    |
| .025.M  | 177 | 70  | 19   | 16 | 6 | 267 | 237 | 8  | 44  | M6  | 2.5           | 1    |
| .032.M  | 177 | 70  | 19   | 16 | 6 | 267 | 237 | 8  | 44  | M6  | 2.5           | 1    |
| .042.M  | 177 | 80  | 19   | 34 | 6 | 295 | 265 | 8  | 54  | M6  | 3.7           | 1    |
| .055.M  | 177 | 80  | 19   | 33 | 6 | 295 | 265 | 8  | 54  | M6  | 3.9           | 1    |
| .070.M  | 205 | 100 | 28.5 | 38 | 8 | 390 | 340 | 12 | 73  | M10 | 6.2           | 1    |
| .080.M  | 205 | 100 | 28.5 | 38 | 8 | 390 | 340 | 12 | 73  | M10 | 6.2           | 1    |
| .100.M  | 205 | 100 | 28.5 | 43 | 8 | 390 | 340 | 12 | 73  | M10 | 7.5           | 1    |
| .115.M  | 205 | 100 | 28.5 | 43 | 8 | 390 | 340 | 12 | 73  | M10 | 7.5           | 1    |
| .150.M  | 220 | 130 | 28.5 | 50 | 8 | 420 | 370 | 12 | 103 | M10 | 9.4           | 1    |
| .200.M  | 220 | 130 | 28.5 | 50 | 8 | 420 | 370 | 12 | 103 | M10 | 9.4           | 1    |

CASE 1



#### ASSEMBLY CONNECTION "M"





## FIN1940E

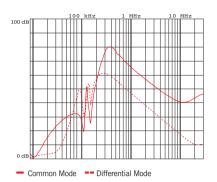
Three Phase + Neutral Filter





# **FIN1940E**

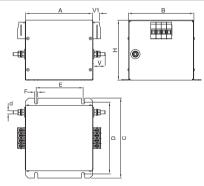
CONNECTIONS


Three Phase + Neutral Filter

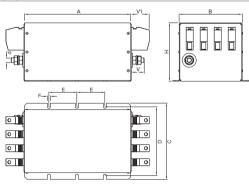
## ELECTRICAL CHARACTERISTICS

| FIN1940E | Rated<br>Current<br>40°C | Rated<br>Current<br>50°C | Power Loss<br>(W) |
|----------|--------------------------|--------------------------|-------------------|
| .018.M   | 18                       | 16                       | 5                 |
| .036.M   | 36                       | 32                       | 18                |
| .072.M   | 72                       | 64                       | 40                |
| .100.M   | 100                      | 90                       | 102               |
| .130.M   | 130                      | 120                      | 96                |
| .200.M   | 200                      | 180                      | 98                |

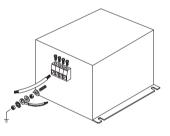
|   |                         | LINE                                    |                            | P         | ΡE             |
|---|-------------------------|-----------------------------------------|----------------------------|-----------|----------------|
| S | Solid<br>Cable<br>(mm²) | Stranded<br>Cable<br>(mm <sup>2</sup> ) | Terminal<br>Torque<br>(Nm) | d<br>(mm) | Torque<br>(Nm) |
|   | 0.2 - 10                | 0.2 - 6                                 | 1.2                        | M5        | 4              |
|   | 0.2 - 10                | 0.2 - 6                                 | 1.2                        | M6        | 6              |
|   | 0.5 - 16                | 0.5 - 10                                | 1.8                        | M10       | 18             |
|   | 4 - 25                  | 6 - 35                                  | 4.5                        | M10       | 18             |
|   | 10 - 50                 | 10 - 50                                 | 4                          | M10       | 18             |
|   | 35 - 95                 | 35 - 95                                 | 20                         | M10       | 18             |


#### **TYPICAL ATTENUATION**

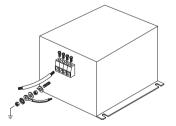



#### **MECHANICAL DIMENSIONS mm**

| FIN1940E | A   | В   | C   | D     | E   | F   | H   | d   | ۷    | <b>V</b> 1 | Weight<br>Kg. | Case |  |
|----------|-----|-----|-----|-------|-----|-----|-----|-----|------|------------|---------------|------|--|
| .018.M   | 120 | 115 | 143 | 127.5 | 80  | 6.5 | 80  | M5  | 23.5 | 11.2       | 1             | 1    |  |
| .036.M   | 130 | 125 | 153 | 137.5 | 90  | 6.5 | 115 | M6  | 23.5 | 14.5       | 1.1           | 2    |  |
| .072.M   | 160 | 125 | 153 | 137.5 | 100 | 6.5 | 125 | M10 | 28   | 32.5       | 1.6           | 3    |  |
| .100.M   | 230 | 135 | 163 | 147.5 | 60  | 6.5 | 125 | M10 | 27.5 | 38.5       | 3.4           | 4    |  |
| .130.M   | 250 | 140 | 170 | 153.5 | 100 | 6.5 | 140 | M10 | 27.5 | 43         | 4.5           | 5    |  |
| .200.M   | 280 | 140 | 170 | 153.5 | 115 | 6.5 | 170 | M10 | 27.5 | 50         | 4.8           | 6    |  |


CASE 1, 2, 3




#### CASE 4, 5, 6



#### **ASSEMBLY CONNECTION "M"**



#### **ASSEMBLY CONNECTION "M"**







|                              |                |               |         | CONNE  | CTORS |             | FEATURES                   |                          | A                    | PPLICATION         | IS               |                |
|------------------------------|----------------|---------------|---------|--------|-------|-------------|----------------------------|--------------------------|----------------------|--------------------|------------------|----------------|
| Filter<br>Selection<br>Guide | Description    | ent Range (A) | age DC  | SN     | Bar   | Attenuation | Chassis Insulated (0 Volt) | Very Low Leakage Current | PV with PE Insulated | Recharging Station | Renewable Energy | oval           |
| DC Filters                   | Desc           | Current       | Voltage | Screws | Bus F | High        | Chass                      | Very                     | PV w                 | Rech               | Rene             | Approval       |
| FIN1220                      | 2-phase filter | 5-3000        | 0-1000  | ×      | ×     |             |                            | ×                        |                      | ×                  | ×                | c <b>FL</b> us |
| FIN1220.0V                   | 2-phase filter | 5-3000        | 0-1000  | ×      | ×     |             | ×                          | ×                        | ×                    |                    |                  | c <b>AL</b> us |
| FIN1520                      | 2-phase filter | 5-3000        | 0-1000  | ×      | ×     | ×           |                            |                          |                      | ×                  | ×                | c <b>W</b> us  |
| FIN1520.0V                   | 2-phase filter | 5-3000        | 0-1000  | ×      | ×     | ×           | ×                          |                          | ×                    |                    |                  | c <b>AL</b> us |
| FIN7212                      | 2-phase filter | 150-3000      | 0-1000  |        | ×     |             | ×                          |                          | ×                    |                    | ×                |                |





# **DC** Filters

Enerdoor DC filter series is designed specifically for the photovoltaic industry. This series carries CE and UL approvals and offers a current range from 5 to 3000A with nominal voltage up to 1000 Vdc.

The FIN1220, FIN1520 and FIN7212 filters are installed between PV inverters and solar panels to reduce Electromagnetic interference on the DC power line.

The FIN1220.0V, FIN1520.0V and FIN7212 filters offer the possibility of the ground connection being separated from the virtual zero point. This is particularly beneficial for critical networks on the protective earth conductor.

This series features a compact case with screw and bus bar connectors. Customized solutions are available to satisfy various application requirements.

#### DC Filter applications include:

- Single phase machines up to 700 Vac
- Renewable energy
- Recharging stations
- AC/DC converters



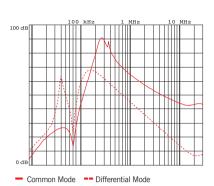




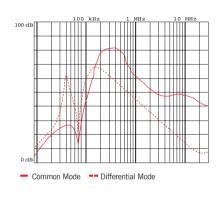







CONNECTIONS

## **ELECTRICAL CHARACTERISTICS**


|         |                          |                          |                   | LI        | NE             | P          | E              |
|---------|--------------------------|--------------------------|-------------------|-----------|----------------|------------|----------------|
| FIN1220 | Rated<br>Current<br>40°C | Rated<br>Current<br>50°C | Power Loss<br>(W) | d<br>(mm) | Torque<br>(Nm) | d1<br>(mm) | Torque<br>(Nm) |
| .005.V  | 5                        | 4                        | 5                 | M4        | 1.2            | M4         | 1.2            |
| .010.V  | 10                       | 8                        | 7                 | M4        | 1.2            | M4         | 1.2            |
| .016.V  | 16                       | 14                       | 14                | M5        | 4              | M5         | 4              |
| .030.V  | 30                       | 27                       | 11                | M5        | 4              | M5         | 4              |
| .050.V  | 50                       | 46                       | 10                | M6        | 6              | M5         | 4              |
| .080.V  | 80                       | 75                       | 39                | M8        | 14             | M8         | 14             |
| .100.V  | 100                      | 90                       | 45                | M8        | 14             | M8         | 14             |
| .130.V  | 130                      | 110                      | 49                | M10       | 18             | M10        | 18             |
| .150.V  | 150                      | 140                      | 69                | M10       | 18             | M10        | 18             |
| .180.V  | 180                      | 165                      | 77                | M10       | 18             | M10        | 18             |
| .200.V  | 200                      | 190                      | 85                | M10       | 18             | M10        | 18             |
| .250.V  | 272                      | 250                      | 87                | M12       | 20             | M10        | 18             |
| .280.V  | 297                      | 280                      | 77                | M12       | 20             | M10        | 18             |
| .280.B  | 330                      | 320                      | 76                | M8        | 14             | M10        | 18             |
| .320.B  | 330                      | 320                      | 77                | M8        | 14             | M10        | 18             |
| .360.B  | 390                      | 360                      | 98                | M8        | 14             | M10        | 18             |
| .400.B  | 435                      | 400                      | 102               | M8        | 14             | M10        | 18             |
| .500.B  | 545                      | 500                      | 96                | M8        | 14             | M10        | 18             |
| .600.B  | 654                      | 600                      | 102               | M10       | 25             | M10        | 18             |
| .750.B  | 800                      | 750                      | 88                | M10       | 25             | M10        | 18             |
| .900.B  | 940                      | 900                      | 72                | M12       | 50             | M12        | 20             |
| .1000.B | 1050                     | 1000                     | 102               | M12       | 50             | M12        | 20             |
| .1250.B | 1290                     | 1250                     | 96                | M12       | 50             | M12        | 20             |
| .1500.B | 1550                     | 1500                     | 108               | M12       | 50             | M12        | 20             |
| .1600.B | 1650                     | 1600                     | 115               | M12       | 50             | M12        | 20             |
| .1750.B | 1800                     | 1750                     | 120               | M12       | 50             | M12        | 20             |
| .2000.B | 2050                     | 2000                     | 122               | M12       | 50             | M12        | 20             |
| .2250.B | 2300                     | 2250                     | 127               | M12       | 50             | M12        | 20             |
| .2500.B | 2550                     | 2500                     | 140               | M12       | 50             | M12        | 20             |
| .3000.B | 3000                     | 2950                     | 150               | M12       | 50             | M12        | 20             |

DC Filter

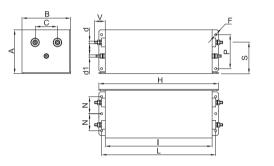
#### TYPICAL ATTENUATION



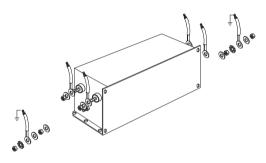
Typical attenuation 7A - 400A



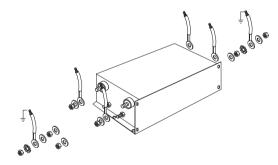
Typical attenuation 500A - 3000A



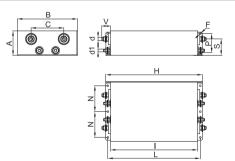




#### **MECHANICAL DIMENSIONS mm**

| FIN1220 | A  | В   | C   | d   | d1  | ۷  | F   | H   | I   | L   | N    | Р  | S  | Weight<br>Kg. | Case |
|---------|----|-----|-----|-----|-----|----|-----|-----|-----|-----|------|----|----|---------------|------|
| .005.V  | 58 | 86  | 44  | M4  | M4  | 14 | 4.5 | 186 | 160 | 176 | 30   | 40 | 38 | 2             | 1    |
| .010.V  | 58 | 86  | 44  | M4  | M4  | 14 | 4.5 | 186 | 160 | 176 | 30   | 40 | 38 | 2             | 1    |
| .016.V  | 90 | 100 | 46  | M5  | M5  | 28 | 4.5 | 246 | 220 | 235 | 35   | 70 | 64 | 3             | 2    |
| .030.V  | 90 | 100 | 46  | M5  | M5  | 28 | 4.5 | 246 | 220 | 235 | 35   | 70 | 64 | 3             | 2    |
| .050.V  | 90 | 100 | 46  | M6  | M6  | 28 | 4.5 | 246 | 220 | 235 | 35   | 70 | 64 | 3             | 3    |
| .080.V  | 90 | 100 | 40  | M8  | M8  | 28 | 4.5 | 246 | 220 | 235 | 35   | 70 | 69 | 3             | 4    |
| .100.V  | 90 | 100 | 40  | M8  | M8  | 28 | 4.5 | 246 | 220 | 235 | 35   | 70 | 69 | 3             | 4    |
| .130.V  | 90 | 185 | 120 | M10 | M10 | 29 | 6.5 | 356 | 320 | 340 | 77.5 | 70 | 60 | 5             | 5    |
| .150.V  | 90 | 185 | 120 | M10 | M10 | 29 | 6.5 | 356 | 320 | 340 | 77.5 | 70 | 60 | 5             | 5    |
| .180.V  | 90 | 185 | 120 | M10 | M10 | 29 | 6.5 | 356 | 320 | 340 | 77.5 | 70 | 60 | 5             | 5    |
| .200.V  | 90 | 185 | 120 | M10 | M10 | 29 | 6.5 | 356 | 320 | 340 | 77.5 | 70 | 60 | 5             | 5    |
| .250.V  | 90 | 220 | 120 | M12 | M12 | 30 | 6.5 | 356 | 320 | 340 | 95   | 70 | 60 | 7.5           | 6    |
| .280.V  | 90 | 220 | 120 | M12 | M12 | 30 | 6.5 | 356 | 320 | 340 | 95   | 70 | 60 | 7.5           | 6    |


## CASE 1, 2, 3, 4



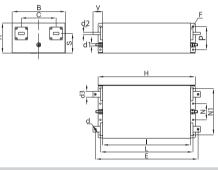

## ASSEMBLY CONNECTION "V"



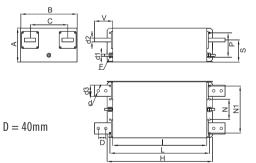
## **ASSEMBLY CONNECTION "V"**



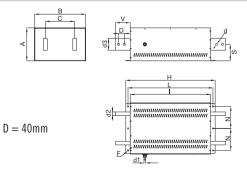
CASE 5, 6



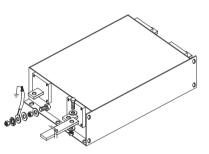




#### **MECHANICAL DIMENSIONS mm**

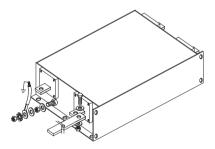
| FIN1220 | A   | В   | C   | d   | d1  | d2 | d3 | ۷   | F   | H   | I.  | L   | N   | N1  | Р   | S     | Weight<br>Kg. | Case |
|---------|-----|-----|-----|-----|-----|----|----|-----|-----|-----|-----|-----|-----|-----|-----|-------|---------------|------|
| .280.B  | 90  | 220 | 120 | M8  | M10 | 6  | 20 | 42  | 6.5 | 356 | 320 | 340 | 50  | 190 | 70  | 55    | 7.5           | 7    |
| .320.B  | 90  | 220 | 120 | M8  | M10 | 6  | 20 | 42  | 6.5 | 356 | 320 | 340 | 50  | 190 | 70  | 55    | 7.5           | 7    |
| .360.B  | 130 | 230 | 150 | M8  | M10 | 10 | 25 | 42  | 6.5 | 420 | 380 | 400 | 70  | 200 | 85  | 85    | 10            | 8    |
| .400.B  | 130 | 230 | 150 | M8  | M10 | 10 | 25 | 42  | 6.5 | 420 | 380 | 400 | 70  | 200 | 85  | 85    | 10            | 8    |
| .500.B  | 130 | 230 | 150 | M8  | M10 | 10 | 25 | 42  | 6.5 | 420 | 380 | 400 | 70  | 200 | 85  | 85    | 10            | 8    |
| .600.B  | 130 | 230 | 150 | M10 | M10 | 15 | 30 | 48  | 6.5 | 510 | 450 | 480 | 70  | 200 | 100 | 85    | 15.5          | 9    |
| .750.B  | 130 | 230 | 150 | M10 | M10 | 15 | 30 | 48  | 6.5 | 510 | 450 | 480 | 70  | 200 | 100 | 85    | 15.5          | 9    |
| .900.B  | 160 | 250 | 140 | M12 | M12 | 20 | 40 | 94  | 8.5 | 510 | 450 | 480 | 70  | 200 | 110 | 110   | 23            | 10   |
| .1000.B | 160 | 250 | 140 | M12 | M12 | 20 | 40 | 94  | 8.5 | 510 | 450 | 480 | 70  | 200 | 110 | 110   | 23            | 10   |
| .1250.B | 160 | 250 | 140 | M12 | M12 | 20 | 40 | 94  | 8.5 | 510 | 450 | 480 | 70  | 200 | 110 | 110   | 23            | 10   |
| .1500.B | 180 | 300 | 200 | M12 | M12 | 20 | 60 | 97  | 8.5 | 560 | 500 | 530 | 80  | 250 | 130 | 117   | 27            | 11   |
| .1600.B | 180 | 300 | 200 | M12 | M12 | 20 | 60 | 97  | 8.5 | 560 | 500 | 530 | 80  | 250 | 130 | 117   | 27            | 11   |
| .1750.B | 180 | 300 | 200 | M12 | M12 | 20 | 60 | 97  | 8.5 | 560 | 500 | 530 | 80  | 250 | 130 | 117   | 27            | 11   |
| .2000.B | 225 | 350 | 200 | M12 | M12 | 25 | 80 | 100 | 8.5 | 610 | 550 | 580 | 150 | -   | -   | 112.5 | 45            | 12   |
| .2250.B | 225 | 350 | 200 | M12 | M12 | 25 | 80 | 100 | 8.5 | 610 | 550 | 580 | 150 | -   | -   | 112.5 | 45            | 12   |
| .2500.B | 225 | 350 | 200 | M12 | M12 | 25 | 80 | 100 | 8.5 | 610 | 550 | 580 | 150 | -   | -   | 112.5 | 45            | 12   |
| .3000.B | 225 | 350 | 200 | M12 | M12 | 25 | 80 | 100 | 8.5 | 610 | 550 | 580 | 150 | -   | -   | 112.5 | 45            | 12   |


## CASE 7, 8, 9

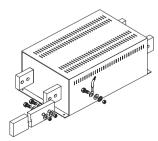



CASE 10, 11




## CASE 12

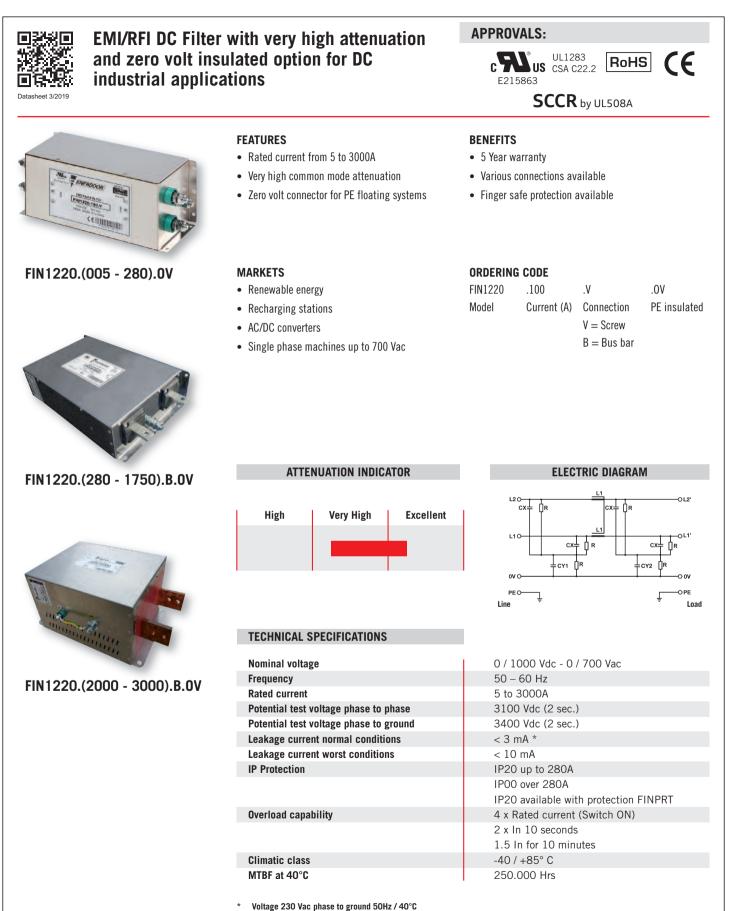



#### **ASSEMBLY CONNECTION "B"**



#### ASSEMBLY CONNECTION "B"




## **ASSEMBLY CONNECTION "B"**



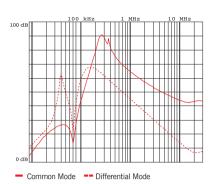




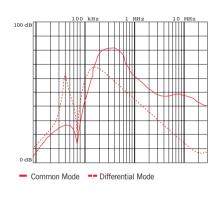









CONNECTIONS


#### **ELECTRICAL CHARACTERISTICS**

|            |                          |                          |                   | LI        | NE             | P          | E              | 0          | V              |
|------------|--------------------------|--------------------------|-------------------|-----------|----------------|------------|----------------|------------|----------------|
| FIN1220    | Rated<br>Current<br>40°C | Rated<br>Current<br>50°C | Power Loss<br>(W) | d<br>(mm) | Torque<br>(Nm) | d1<br>(mm) | Torque<br>(Nm) | d4<br>(mm) | Torque<br>(Nm) |
| .005.V.0V  | 5                        | 4                        | 5                 | M4        | 1.2            | M4         | 1.2            | M4         | 1.2            |
| .010.V.0V  | 10                       | 8                        | 7                 | M4        | 1.2            | M4         | 1.2            | M4         | 1.2            |
| .016.V.0V  | 16                       | 14                       | 14                | M5        | 4              | M5         | 4              | M5         | 4              |
| .030.V.0V  | 30                       | 27                       | 11                | M5        | 4              | M5         | 4              | M5         | 4              |
| .050.V.0V  | 50                       | 46                       | 10                | M6        | 6              | M5         | 4              | M5         | 4              |
| .080.V.0V  | 80                       | 75                       | 39                | M8        | 14             | M8         | 14             | M6         | 6              |
| .100.V.0V  | 100                      | 90                       | 45                | M8        | 14             | M8         | 14             | M6         | 6              |
| .130.V.0V  | 130                      | 110                      | 49                | M10       | 18             | M10        | 18             | M10        | 18             |
| .150.V.OV  | 150                      | 140                      | 69                | M10       | 18             | M10        | 18             | M10        | 18             |
| .180.V.0V  | 180                      | 165                      | 77                | M10       | 18             | M10        | 18             | M10        | 18             |
| .200.V.0V  | 200                      | 190                      | 85                | M10       | 18             | M10        | 18             | M10        | 18             |
| .250.V.0V  | 272                      | 250                      | 87                | M12       | 20             | M10        | 18             | M10        | 18             |
| .280.V.0V  | 297                      | 280                      | 77                | M12       | 20             | M10        | 18             | M10        | 18             |
| .280.B.0V  | 330                      | 320                      | 76                | M8        | 14             | M10        | 18             | M10        | 18             |
| .320.B.0V  | 330                      | 320                      | 77                | M8        | 14             | M10        | 18             | M10        | 18             |
| .360.B.0V  | 390                      | 360                      | 98                | M8        | 14             | M10        | 18             | M10        | 18             |
| .400.B.0V  | 435                      | 400                      | 102               | M8        | 14             | M10        | 18             | M10        | 18             |
| .500.B.0V  | 545                      | 500                      | 96                | M8        | 14             | M10        | 18             | M10        | 18             |
| .600.B.0V  | 654                      | 600                      | 102               | M10       | 25             | M10        | 18             | M10        | 18             |
| .750.B.0V  | 800                      | 750                      | 88                | M10       | 25             | M10        | 18             | M10        | 18             |
| .900.B.0V  | 940                      | 900                      | 72                | M12       | 50             | M12        | 20             | M12        | 20             |
| .1000.B.0V | 1050                     | 1000                     | 102               | M12       | 50             | M12        | 20             | M12        | 20             |
| .1250.B.0V | 1290                     | 1250                     | 96                | M12       | 50             | M12        | 20             | M12        | 20             |
| .1500.B.0V | 1550                     | 1500                     | 108               | M12       | 50             | M12        | 20             | M12        | 20             |
| .1600.B.0V | 1650                     | 1600                     | 115               | M12       | 50             | M12        | 20             | M12        | 20             |
| .1750.B.0V | 1800                     | 1750                     | 120               | M12       | 50             | M12        | 20             | M12        | 20             |
| .2000.B.0V | 2050                     | 2000                     | 122               | M12       | 50             | M12        | 20             | M12        | 20             |
| .2250.B.OV | 2300                     | 2250                     | 127               | M12       | 50             | M12        | 20             | M12        | 20             |
| .2500.B.0V | 2550                     | 2500                     | 140               | M12       | 50             | M12        | 20             | M12        | 20             |
| .3000.B.0V | 3000                     | 2950                     | 150               | M12       | 50             | M12        | 20             | M12        | 20             |

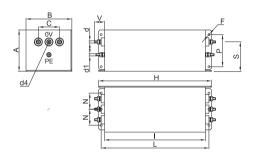
#### **TYPICAL ATTENUATION**



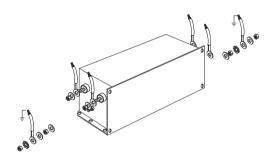
Typical attenuation 5A - 400A



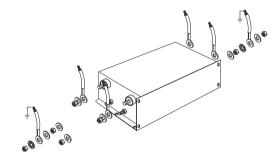
Typical attenuation 500A - 3000A



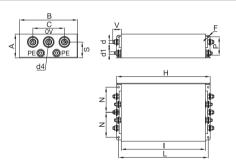




#### **MECHANICAL DIMENSIONS mm**

| FIN1220   | A  | В   | C   | d   | d1  | d4  | V  | F   | H   | I   | L   | N    | Р  | S  | Weight<br>Kg. | Case |
|-----------|----|-----|-----|-----|-----|-----|----|-----|-----|-----|-----|------|----|----|---------------|------|
| .005.V.0V | 58 | 86  | 44  | M4  | M4  | M4  | 14 | 4.5 | 186 | 160 | 176 | 30   | 40 | 38 | 2             | 1    |
| .010.V.0V | 58 | 86  | 44  | M4  | M4  | M4  | 14 | 4.5 | 186 | 160 | 176 | 30   | 40 | 38 | 2             | 1    |
| .016.V.OV | 90 | 100 | 46  | M5  | M5  | M5  | 28 | 4.5 | 246 | 220 | 235 | 35   | 70 | 64 | 3             | 2    |
| .030.V.0V | 90 | 100 | 46  | M5  | M5  | M5  | 28 | 4.5 | 246 | 220 | 235 | 35   | 70 | 64 | 3             | 2    |
| .050.V.0V | 90 | 100 | 46  | M6  | M5  | M5  | 28 | 4.5 | 246 | 220 | 235 | 35   | 70 | 64 | 3             | 3    |
| .080.V.0V | 90 | 100 | 40  | M8  | M8  | M6  | 28 | 4.5 | 246 | 220 | 235 | 35   | 70 | 69 | 3             | 4    |
| .100.V.OV | 90 | 100 | 40  | M8  | M8  | M6  | 28 | 4.5 | 246 | 220 | 235 | 35   | 70 | 69 | 3             | 4    |
| .130.V.0V | 90 | 185 | 120 | M10 | M10 | M10 | 29 | 6.5 | 356 | 320 | 340 | 77.5 | 70 | 60 | 5             | 5    |
| .150.V.0V | 90 | 185 | 120 | M10 | M10 | M10 | 29 | 6.5 | 356 | 320 | 340 | 77.5 | 70 | 60 | 5             | 5    |
| .180.V.0V | 90 | 185 | 120 | M10 | M10 | M10 | 29 | 6.5 | 356 | 320 | 340 | 77.5 | 70 | 60 | 5             | 5    |
| .200.V.0V | 90 | 185 | 120 | M10 | M10 | M10 | 29 | 6.5 | 356 | 320 | 340 | 77.5 | 70 | 60 | 5             | 5    |
| .250.V.OV | 90 | 220 | 120 | M12 | M10 | M10 | 30 | 6.5 | 356 | 320 | 340 | 95   | 70 | 60 | 7.5           | 6    |
| .280.V.0V | 90 | 220 | 120 | M12 | M10 | M10 | 30 | 6.5 | 356 | 320 | 340 | 95   | 70 | 60 | 7.5           | 6    |


## CASE 1, 2, 3, 4



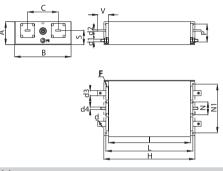

## **ASSEMBLY CONNECTION "V"**



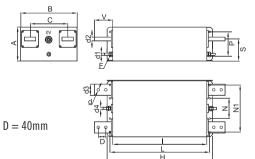
## ASSEMBLY CONNECTION "V"



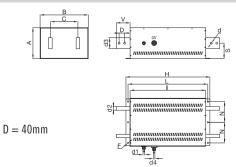




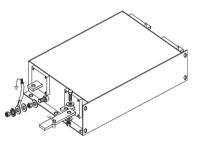




#### **MECHANICAL DIMENSIONS mm**

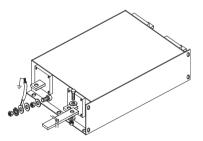
| FIN1220    | A   | В   | C   | d   | d1  | d2 | d3 | d4  | V   | F   | H   | I.  | L   | N   | N1  | Р   | S     | Weight<br>Kg. | Case |
|------------|-----|-----|-----|-----|-----|----|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-------|---------------|------|
| .280.B.0V  | 90  | 220 | 120 | M8  | M10 | 6  | 20 | M10 | 42  | 6.5 | 356 | 320 | 340 | 50  | 190 | 70  | 55    | 7.5           | 7    |
| .320.B.0V  | 90  | 220 | 120 | M8  | M10 | 6  | 20 | M10 | 42  | 6.5 | 356 | 320 | 340 | 50  | 190 | 70  | 55    | 7.5           | 7    |
| .360.B.0V  | 130 | 230 | 150 | M8  | M10 | 10 | 25 | M10 | 42  | 6.5 | 420 | 380 | 400 | 70  | 200 | 85  | 85    | 10            | 8    |
| .400.B.0V  | 130 | 230 | 150 | M8  | M10 | 10 | 25 | M10 | 42  | 6.5 | 420 | 380 | 400 | 70  | 200 | 85  | 85    | 10            | 8    |
| .500.B.0V  | 130 | 230 | 150 | M8  | M10 | 10 | 25 | M10 | 42  | 6.5 | 420 | 380 | 400 | 70  | 200 | 85  | 85    | 10            | 8    |
| .600.B.0V  | 130 | 230 | 150 | M10 | M10 | 15 | 30 | M10 | 48  | 6.5 | 510 | 450 | 480 | 70  | 200 | 100 | 85    | 15.5          | 9    |
| .750.B.OV  | 130 | 230 | 150 | M10 | M10 | 15 | 30 | M10 | 48  | 6.5 | 510 | 450 | 480 | 70  | 200 | 100 | 85    | 15.5          | 9    |
| .900.B.0V  | 160 | 250 | 140 | M12 | M12 | 20 | 40 | M12 | 94  | 8.5 | 510 | 450 | 480 | 70  | 200 | 110 | 110   | 23            | 10   |
| .1000.B.0V | 160 | 250 | 140 | M12 | M12 | 20 | 40 | M12 | 94  | 8.5 | 510 | 450 | 480 | 70  | 200 | 110 | 110   | 23            | 10   |
| .1250.B.OV | 160 | 250 | 140 | M12 | M12 | 20 | 40 | M12 | 94  | 8.5 | 510 | 450 | 480 | 70  | 200 | 110 | 110   | 23            | 10   |
| .1500.B.OV | 180 | 300 | 200 | M12 | M12 | 20 | 60 | M12 | 97  | 8.5 | 560 | 500 | 530 | 80  | 250 | 130 | 117   | 27            | 11   |
| .1600.B.0V | 180 | 300 | 200 | M12 | M12 | 20 | 60 | M12 | 97  | 8.5 | 560 | 500 | 530 | 80  | 250 | 130 | 117   | 27            | 11   |
| .1750.B.OV | 180 | 300 | 200 | M12 | M12 | 20 | 60 | M12 | 97  | 8.5 | 560 | 500 | 530 | 80  | 250 | 130 | 117   | 27            | 11   |
| .2000.B.0V | 225 | 350 | 200 | M12 | M12 | 25 | 80 | M12 | 100 | 8.5 | 610 | 550 | 580 | 150 | -   | -   | 112.5 | 45            | 12   |
| .2250.B.OV | 225 | 350 | 200 | M12 | M12 | 25 | 80 | M12 | 100 | 8.5 | 610 | 550 | 580 | 150 | -   | -   | 112.5 | 45            | 12   |
| .2500.B.0V | 225 | 350 | 200 | M12 | M12 | 25 | 80 | M12 | 100 | 8.5 | 610 | 550 | 580 | 150 | -   | -   | 112.5 | 45            | 12   |
| .3000.B.0V | 225 | 350 | 200 | M12 | M12 | 25 | 80 | M12 | 100 | 8.5 | 610 | 550 | 580 | 150 | -   | -   | 112.5 | 45            | 12   |


## CASE 7, 8, 9

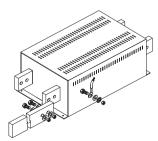



CASE 10, 11




## CASE 12

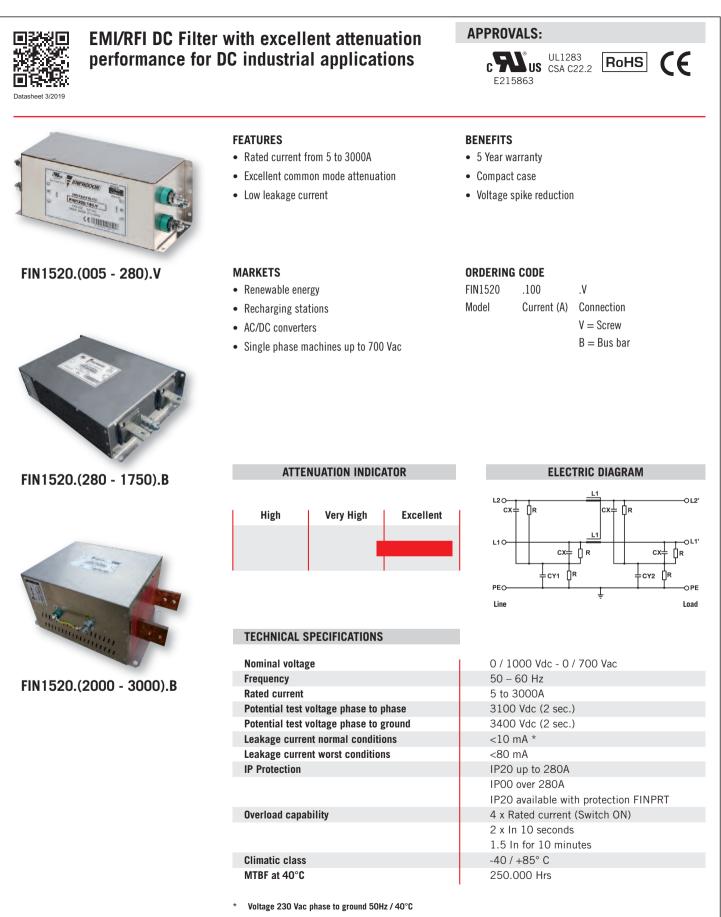



#### ASSEMBLY CONNECTION "B"



#### ASSEMBLY CONNECTION "B"




#### **ASSEMBLY CONNECTION "B"**



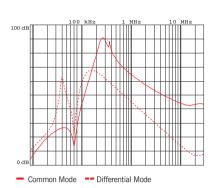




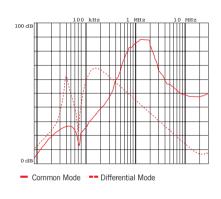









CONNECTIONS


## **ELECTRICAL CHARACTERISTICS**

|         |                          |                          |                   |          | LINE             |            | PE             |
|---------|--------------------------|--------------------------|-------------------|----------|------------------|------------|----------------|
| FIN1520 | Rated<br>Current<br>40°C | Rated<br>Current<br>50°C | Power Loss<br>(W) | d<br>(mm | ) Torque<br>(Nm) | d1<br>(mm) | Torque<br>(Nm) |
| .005.V  | 5                        | 4                        | 5                 | M4       | 1.2              | M4         | 1.2            |
| .010.V  | 10                       | 8                        | 7                 | M4       | 1.2              | M4         | 1.2            |
| .016.V  | 16                       | 14                       | 14                | M5       | 4                | M5         | 4              |
| .030.V  | 30                       | 27                       | 11                | M5       | 4                | M5         | 4              |
| .050.V  | 50                       | 46                       | 10                | Me       | 6                | M5         | 4              |
| V.080.V | 80                       | 75                       | 39                | M8       | 14               | M8         | 14             |
| .100.V  | 100                      | 90                       | 45                | M8       | 14               | M8         | 14             |
| .130.V  | 130                      | 110                      | 49                | M1       | 0 18             | M10        | 18             |
| .150.V  | 150                      | 140                      | 69                | M1       | 0 18             | M10        | 18             |
| .180.V  | 180                      | 165                      | 77                | M1       | 0 18             | M10        | 18             |
| .200.V  | 200                      | 190                      | 85                | M1       | 0 18             | M10        | 18             |
| .250.V  | 272                      | 250                      | 87                | M1       | 2 20             | M10        | 18             |
| .280.V  | 297                      | 280                      | 77                | M1       | 2 20             | M10        | 18             |
| .280.B  | 330                      | 320                      | 76                | M8       | 14               | M10        | 18             |
| .320.B  | 330                      | 320                      | 77                | M8       | 14               | M10        | 18             |
| .360.B  | 390                      | 360                      | 98                | M8       | 14               | M10        | 18             |
| .400.B  | 435                      | 400                      | 102               | M8       | 14               | M10        | 18             |
| .500.B  | 545                      | 500                      | 96                | M8       | 8 14             | M10        | 18             |
| .600.B  | 654                      | 600                      | 102               | M1       | 0 25             | M10        | 18             |
| .750.B  | 800                      | 750                      | 88                | M1       | 0 25             | M10        | 18             |
| .900.B  | 940                      | 900                      | 72                | M1       | 2 50             | M12        | 20             |
| .1000.B | 1050                     | 1000                     | 102               | M1       | 2 50             | M12        | 20             |
| .1250.B | 1290                     | 1250                     | 96                | M1       | 2 50             | M12        | 20             |
| .1500.B | 1550                     | 1500                     | 108               | M1       | 2 50             | M12        | 20             |
| .1600.B | 1650                     | 1600                     | 115               | M1       | 2 50             | M12        | 20             |
| .1750.B | 1800                     | 1750                     | 120               | M1       | 2 50             | M12        | 20             |
| .2000.B | 2050                     | 2000                     | 122               | M1       | 2 50             | M12        | 20             |
| .2250.B | 2300                     | 2250                     | 127               | M1       | 2 50             | M12        | 20             |
| .2500.B | 2550                     | 2500                     | 140               | M1       | 2 50             | M12        | 20             |
| .3000.B | 3000                     | 2950                     | 150               | M1       | 2 50             | M12        | 20             |

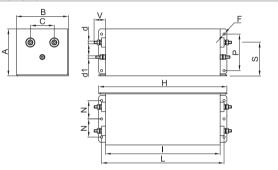
#### **TYPICAL ATTENUATION**



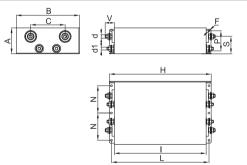
Typical attenuation 5A - 400A



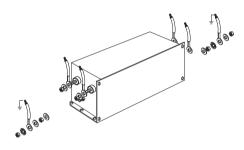
Typical attenuation 500A - 3000A



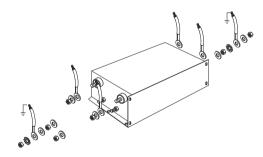




#### **MECHANICAL DIMENSIONS mm**

| FIN1520 | A  | В   | C   | d   | d1  | ۷  | F   | H   | I   | L   | N    | Р  | S  | Weight<br>Kg. | Case |
|---------|----|-----|-----|-----|-----|----|-----|-----|-----|-----|------|----|----|---------------|------|
| .005.V  | 58 | 86  | 44  | M4  | M4  | 14 | 4.5 | 186 | 160 | 176 | 30   | 40 | 38 | 2             | 1    |
| .010.V  | 58 | 86  | 44  | M4  | M4  | 14 | 4.5 | 186 | 160 | 176 | 30   | 40 | 38 | 2             | 1    |
| .016.V  | 90 | 100 | 46  | M5  | M5  | 28 | 4.5 | 246 | 220 | 235 | 35   | 70 | 64 | 3             | 2    |
| .030.V  | 90 | 100 | 46  | M5  | M5  | 28 | 4.5 | 246 | 220 | 235 | 35   | 70 | 64 | 3             | 2    |
| .050.V  | 90 | 100 | 46  | M6  | M5  | 28 | 4.5 | 246 | 220 | 235 | 35   | 70 | 64 | 3             | 3    |
| .080.V  | 90 | 100 | 40  | M8  | M8  | 28 | 4.5 | 246 | 220 | 235 | 35   | 70 | 69 | 3             | 4    |
| .100.V  | 90 | 100 | 40  | M8  | M8  | 28 | 4.5 | 246 | 220 | 235 | 35   | 70 | 69 | 3             | 4    |
| .130.V  | 90 | 185 | 120 | M10 | M10 | 29 | 6.5 | 356 | 320 | 340 | 77.5 | 70 | 60 | 5             | 5    |
| .150.V  | 90 | 185 | 120 | M10 | M10 | 29 | 6.5 | 356 | 320 | 340 | 77.5 | 70 | 60 | 5             | 5    |
| .180.V  | 90 | 185 | 120 | M10 | M10 | 29 | 6.5 | 356 | 320 | 340 | 77.5 | 70 | 60 | 5             | 5    |
| .200.V  | 90 | 185 | 120 | M10 | M10 | 29 | 6.5 | 356 | 320 | 340 | 77.5 | 70 | 60 | 5             | 5    |
| .250.V  | 90 | 220 | 120 | M12 | M10 | 30 | 6.5 | 356 | 320 | 340 | 95   | 70 | 60 | 7.5           | 6    |
| .280.V  | 90 | 220 | 120 | M12 | M10 | 30 | 6.5 | 356 | 320 | 340 | 95   | 70 | 60 | 7.5           | 6    |


## CASE 1, 2, 3, 4




## CASE 5, 6

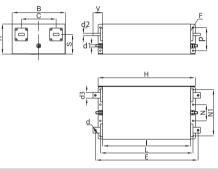


## ASSEMBLY CONNECTION "V"

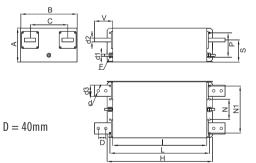


## **ASSEMBLY CONNECTION "V"**

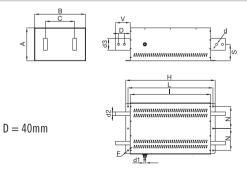




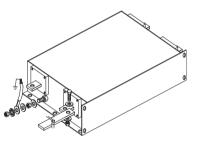




#### **MECHANICAL DIMENSIONS mm**

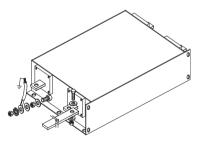
| FIN1520 | A   | В   | C   | d   | d1  | d2 | d3 | ۷   | F   | H   | I.  | L   | N   | N1  | Р   | S     | Weight<br>Kg. | Case |
|---------|-----|-----|-----|-----|-----|----|----|-----|-----|-----|-----|-----|-----|-----|-----|-------|---------------|------|
| .280.B  | 90  | 220 | 120 | M8  | M10 | 6  | 20 | 42  | 6.5 | 356 | 320 | 340 | 50  | 190 | 70  | 55    | 7.5           | 7    |
| .320.B  | 90  | 220 | 120 | M8  | M10 | 6  | 20 | 42  | 6.5 | 356 | 320 | 340 | 50  | 190 | 70  | 55    | 7.5           | 7    |
| .360.B  | 130 | 230 | 150 | M8  | M10 | 10 | 25 | 42  | 6.5 | 420 | 380 | 400 | 70  | 200 | 85  | 85    | 10            | 8    |
| .400.B  | 130 | 230 | 150 | M8  | M10 | 10 | 25 | 42  | 6.5 | 420 | 380 | 400 | 70  | 200 | 85  | 85    | 10            | 8    |
| .500.B  | 130 | 230 | 150 | M8  | M10 | 10 | 25 | 42  | 6.5 | 420 | 380 | 400 | 70  | 200 | 85  | 85    | 10            | 8    |
| .600.B  | 130 | 230 | 150 | M10 | M10 | 15 | 30 | 48  | 6.5 | 510 | 450 | 480 | 70  | 200 | 100 | 85    | 15.5          | 9    |
| .750.B  | 130 | 230 | 150 | M10 | M10 | 15 | 30 | 48  | 6.5 | 510 | 450 | 480 | 70  | 200 | 100 | 85    | 15.5          | 9    |
| .900.B  | 160 | 250 | 140 | M12 | M12 | 20 | 40 | 94  | 8.5 | 510 | 450 | 480 | 70  | 200 | 110 | 110   | 23            | 10   |
| .1000.B | 160 | 250 | 140 | M12 | M12 | 20 | 40 | 94  | 8.5 | 510 | 450 | 480 | 70  | 200 | 110 | 110   | 23            | 10   |
| .1250.B | 160 | 250 | 140 | M12 | M12 | 20 | 40 | 94  | 8.5 | 510 | 450 | 480 | 70  | 200 | 110 | 110   | 23            | 10   |
| .1500.B | 180 | 300 | 200 | M12 | M12 | 20 | 60 | 97  | 8.5 | 560 | 500 | 530 | 80  | 250 | 130 | 117   | 27            | 11   |
| .1600.B | 180 | 300 | 200 | M12 | M12 | 20 | 60 | 97  | 8.5 | 560 | 500 | 530 | 80  | 250 | 130 | 117   | 27            | 11   |
| .1750.B | 180 | 300 | 200 | M12 | M12 | 20 | 60 | 97  | 8.5 | 560 | 500 | 530 | 80  | 250 | 130 | 117   | 27            | 11   |
| .2000.B | 225 | 350 | 200 | M12 | M12 | 25 | 80 | 100 | 8.5 | 610 | 550 | 580 | 150 | -   | -   | 112.5 | 45            | 12   |
| .2250.B | 225 | 350 | 200 | M12 | M12 | 25 | 80 | 100 | 8.5 | 610 | 550 | 580 | 150 | -   | -   | 112.5 | 45            | 12   |
| .2500.B | 225 | 350 | 200 | M12 | M12 | 25 | 80 | 100 | 8.5 | 610 | 550 | 580 | 150 | -   | -   | 112.5 | 45            | 12   |
| .3000.B | 225 | 350 | 200 | M12 | M12 | 25 | 80 | 100 | 8.5 | 610 | 550 | 580 | 150 | -   | -   | 112.5 | 45            | 12   |


## CASE 7, 8, 9

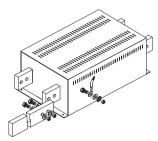



CASE 10, 11




## CASE 12

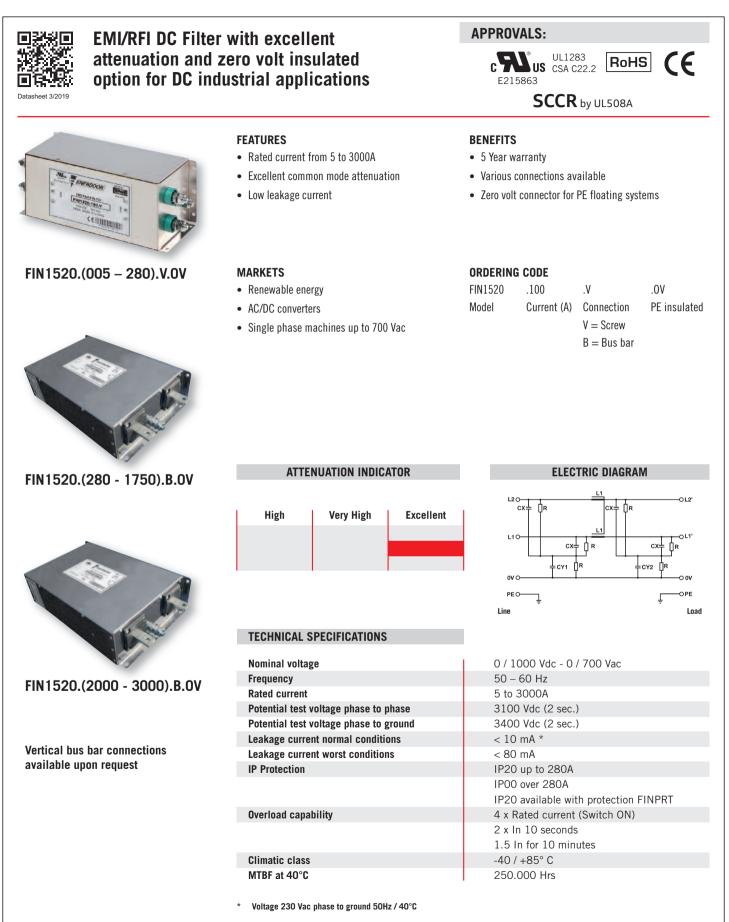



#### ASSEMBLY CONNECTION "B"



#### ASSEMBLY CONNECTION "B"




## **ASSEMBLY CONNECTION "B"**



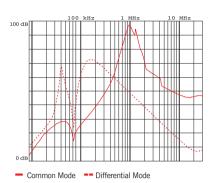













CONNECTIONS


#### **ELECTRICAL CHARACTERISTICS**

|            |                          |                          |                   | LI        | NE             | P          | E              | 0          | V              |
|------------|--------------------------|--------------------------|-------------------|-----------|----------------|------------|----------------|------------|----------------|
| FIN1520    | Rated<br>Current<br>40°C | Rated<br>Current<br>50°C | Power Loss<br>(W) | d<br>(mm) | Torque<br>(Nm) | d1<br>(mm) | Torque<br>(Nm) | d4<br>(mm) | Torque<br>(Nm) |
| .005.V.0V  | 5                        | 4                        | 5                 | M4        | 1.2            | M4         | 1.2            | M4         | 1.2            |
| .010.V.0V  | 10                       | 8                        | 7                 | M4        | 1.2            | M4         | 1.2            | M4         | 1.2            |
| .016.V.OV  | 16                       | 27                       | 14                | M5        | 4              | M5         | 4              | M5         | 4              |
| .030.V.0V  | 30                       | 46                       | 11                | M5        | 4              | M5         | 4              | M5         | 4              |
| .050.V.0V  | 50                       | 75                       | 10                | M6        | 6              | M5         | 4              | M5         | 4              |
| .080.V.0V  | 80                       | 90                       | 39                | M8        | 14             | M8         | 14             | M6         | 6              |
| .100.V.0V  | 100                      | 110                      | 45                | M8        | 14             | M8         | 14             | M6         | 6              |
| .130.V.OV  | 130                      | 140                      | 49                | M10       | 18             | M10        | 18             | M10        | 18             |
| .150.V.OV  | 150                      | 165                      | 69                | M10       | 18             | M10        | 18             | M10        | 18             |
| .180.V.0V  | 200                      | 190                      | 77                | M10       | 18             | M10        | 18             | M10        | 18             |
| .200.V.0V  | 210                      | 200                      | 85                | M10       | 18             | M10        | 18             | M10        | 18             |
| .250.V.0V  | 272                      | 250                      | 87                | M12       | 20             | M10        | 18             | M10        | 18             |
| .280.V.0V  | 297                      | 280                      | 77                | M12       | 20             | M10        | 18             | M10        | 18             |
| .280.B.0V  | 330                      | 320                      | 76                | M8        | 14             | M10        | 18             | M10        | 18             |
| .320.B.0V  | 330                      | 320                      | 77                | M8        | 14             | M10        | 18             | M10        | 18             |
| .360.B.0V  | 390                      | 360                      | 98                | M8        | 14             | M10        | 18             | M10        | 18             |
| .400.B.0V  | 435                      | 400                      | 102               | M8        | 14             | M10        | 18             | M10        | 18             |
| .500.B.0V  | 545                      | 500                      | 96                | M8        | 14             | M10        | 18             | M10        | 18             |
| .600.B.0V  | 654                      | 600                      | 102               | M10       | 25             | M10        | 18             | M10        | 18             |
| .750.B.OV  | 800                      | 750                      | 88                | M10       | 25             | M10        | 18             | M10        | 18             |
| .900.B.0V  | 940                      | 900                      | 72                | M12       | 50             | M12        | 20             | M12        | 20             |
| .1000.B.0V | 1050                     | 1000                     | 102               | M12       | 50             | M12        | 20             | M12        | 20             |
| .1250.B.0V | 1290                     | 1250                     | 96                | M12       | 50             | M12        | 20             | M12        | 20             |
| .1500.B.0V | 1550                     | 1500                     | 108               | M12       | 50             | M12        | 20             | M12        | 20             |
| .1600.B.0V | 1650                     | 1600                     | 115               | M12       | 50             | M12        | 20             | M12        | 20             |
| .1750.B.0V | 1800                     | 1750                     | 120               | M12       | 50             | M12        | 20             | M12        | 20             |
| .2000.B.0V | 2050                     | 2000                     | 122               | M12       | 50             | M12        | 20             | M12        | 20             |
| .2250.B.0V | 2300                     | 2250                     | 127               | M12       | 50             | M12        | 20             | M12        | 20             |
| .2500.B.0V | 2550                     | 2500                     | 140               | M12       | 50             | M12        | 20             | M12        | 20             |
| .3000.B.0V | 3000                     | 2950                     | 150               | M12       | 50             | M12        | 20             | M12        | 20             |

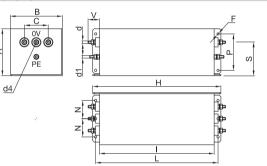
### **TYPICAL ATTENUATION**



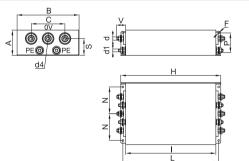
Typical attenuation 5A - 400A



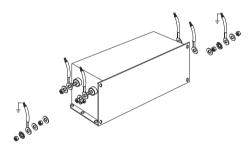
Typical attenuation 500A - 3000A



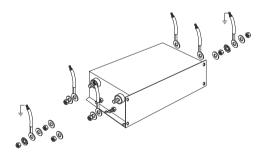




#### **MECHANICAL DIMENSIONS mm**

| FIN1520   | A  | В   | C   | d   | d1  | d4  | V  | F   | H   | I.  | L   | N    | Р  | S  | Weight<br>Kg. | Case |
|-----------|----|-----|-----|-----|-----|-----|----|-----|-----|-----|-----|------|----|----|---------------|------|
| .005.V.0V | 58 | 86  | 44  | M4  | M4  | M4  | 14 | 4.5 | 186 | 160 | 176 | 30   | 40 | 38 | 2             | 1    |
| .010.V.0V | 58 | 86  | 44  | M4  | M4  | M4  | 14 | 4.5 | 186 | 160 | 176 | 30   | 40 | 38 | 2             | 1    |
| .016.V.OV | 90 | 100 | 46  | M5  | M5  | M5  | 28 | 4.5 | 246 | 220 | 235 | 35   | 70 | 64 | 3             | 2    |
| .030.V.0V | 90 | 100 | 46  | M5  | M5  | M5  | 28 | 4.5 | 246 | 220 | 235 | 35   | 70 | 64 | 3             | 2    |
| .050.V.OV | 90 | 100 | 46  | M6  | M5  | M5  | 28 | 4.5 | 246 | 220 | 235 | 35   | 70 | 64 | 3             | 3    |
| .080.V.0V | 90 | 100 | 40  | M8  | M8  | M6  | 28 | 4.5 | 246 | 220 | 235 | 35   | 70 | 69 | 3             | 4    |
| .100.V.OV | 90 | 100 | 40  | M8  | M8  | M6  | 28 | 4.5 | 246 | 220 | 235 | 35   | 70 | 69 | 3             | 4    |
| .130.V.OV | 90 | 185 | 120 | M10 | M10 | M10 | 29 | 6.5 | 356 | 320 | 340 | 77.5 | 70 | 60 | 5             | 5    |
| .150.V.OV | 90 | 185 | 120 | M10 | M10 | M10 | 29 | 6.5 | 356 | 320 | 340 | 77.5 | 70 | 60 | 5             | 5    |
| .180.V.OV | 90 | 185 | 120 | M10 | M10 | M10 | 29 | 6.5 | 356 | 320 | 340 | 77.5 | 70 | 60 | 5             | 5    |
| .200.V.0V | 90 | 185 | 120 | M10 | M10 | M10 | 29 | 6.5 | 356 | 320 | 340 | 77.5 | 70 | 60 | 5             | 5    |
| .250.V.OV | 90 | 220 | 120 | M12 | M10 | M10 | 30 | 6.5 | 356 | 320 | 340 | 95   | 70 | 60 | 7.5           | 6    |
| .280.V.0V | 90 | 220 | 120 | M12 | M10 | M10 | 30 | 6.5 | 356 | 320 | 340 | 95   | 70 | 60 | 7.5           | 6    |







CASE 5, 6



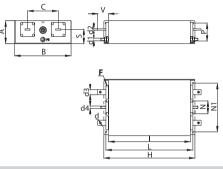
**ASSEMBLY CONNECTION "V"** 



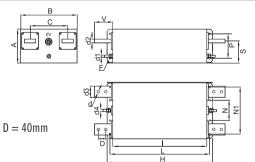
## **ASSEMBLY CONNECTION "V"**



128



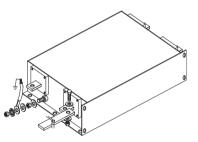




#### **MECHANICAL DIMENSIONS mm**

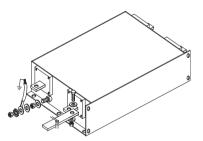
| FIN1520    | A   | В   | C   | d   | d1  | d2 | d3 | d4  | V   | F   | H   | T   | L   | N   | N1  | Р   | S     | Weight<br>Kg. | Case |
|------------|-----|-----|-----|-----|-----|----|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-------|---------------|------|
| .280.B.0V  | 90  | 220 | 120 | M8  | M10 | 6  | 20 | M10 | 42  | 6.5 | 356 | 320 | 340 | 50  | 190 | 70  | 55    | 7.5           | 7    |
| .320.B.0V  | 90  | 220 | 120 | M8  | M10 | 6  | 20 | M10 | 42  | 6.5 | 356 | 320 | 340 | 50  | 190 | 70  | 55    | 7.5           | 7    |
| .360.B.0V  | 130 | 230 | 150 | M8  | M10 | 10 | 25 | M10 | 42  | 6.5 | 420 | 380 | 400 | 70  | 200 | 85  | 85    | 10            | 8    |
| .400.B.0V  | 130 | 230 | 150 | M8  | M10 | 10 | 25 | M10 | 42  | 6.5 | 420 | 380 | 400 | 70  | 200 | 85  | 85    | 10            | 8    |
| .500.B.0V  | 130 | 230 | 150 | M8  | M10 | 10 | 25 | M10 | 42  | 6.5 | 420 | 380 | 400 | 70  | 200 | 85  | 85    | 10            | 8    |
| .600.B.0V  | 130 | 230 | 150 | M10 | M10 | 15 | 30 | M10 | 48  | 6.5 | 510 | 450 | 480 | 70  | 200 | 100 | 85    | 15.5          | 9    |
| .750.B.0V  | 130 | 230 | 150 | M10 | M10 | 15 | 30 | M10 | 48  | 6.5 | 510 | 450 | 480 | 70  | 200 | 100 | 85    | 15.5          | 9    |
| .900.B.0V  | 160 | 250 | 140 | M12 | M12 | 20 | 40 | M12 | 94  | 8.5 | 510 | 450 | 480 | 70  | 200 | 110 | 110   | 23            | 10   |
| .1000.B.0V | 160 | 250 | 140 | M12 | M12 | 20 | 40 | M12 | 94  | 8.5 | 510 | 450 | 480 | 70  | 200 | 110 | 110   | 23            | 10   |
| .1250.B.OV | 160 | 250 | 140 | M12 | M12 | 20 | 40 | M12 | 94  | 8.5 | 510 | 450 | 480 | 70  | 200 | 110 | 110   | 23            | 10   |
| .1500.B.0V | 180 | 300 | 200 | M12 | M12 | 20 | 60 | M12 | 97  | 8.5 | 560 | 500 | 530 | 80  | 250 | 130 | 117   | 27            | 11   |
| .1600.B.0V | 180 | 300 | 200 | M12 | M12 | 20 | 60 | M12 | 97  | 8.5 | 560 | 500 | 530 | 80  | 250 | 130 | 117   | 27            | 11   |
| .1750.B.OV | 180 | 300 | 200 | M12 | M12 | 20 | 60 | M12 | 97  | 8.5 | 560 | 500 | 530 | 80  | 250 | 130 | 117   | 27            | 11   |
| .2000.B.0V | 225 | 350 | 200 | M12 | M12 | 25 | 80 | M12 | 100 | 8.5 | 610 | 550 | 580 | 150 | -   | -   | 112.5 | 45            | 12   |
| .2250.B.OV | 225 | 350 | 200 | M12 | M12 | 25 | 80 | M12 | 100 | 8.5 | 610 | 550 | 580 | 150 | -   | -   | 112.5 | 45            | 12   |
| .2500.B.0V | 225 | 350 | 200 | M12 | M12 | 25 | 80 | M12 | 100 | 8.5 | 610 | 550 | 580 | 150 | -   | -   | 112.5 | 45            | 12   |
| .3000.B.0V | 225 | 350 | 200 | M12 | M12 | 25 | 80 | M12 | 100 | 8.5 | 610 | 550 | 580 | 150 | -   | -   | 112.5 | 45            | 12   |

## CASE 7, 8, 9

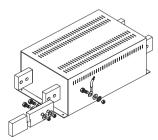



CASE 10, 11




## CASE 12

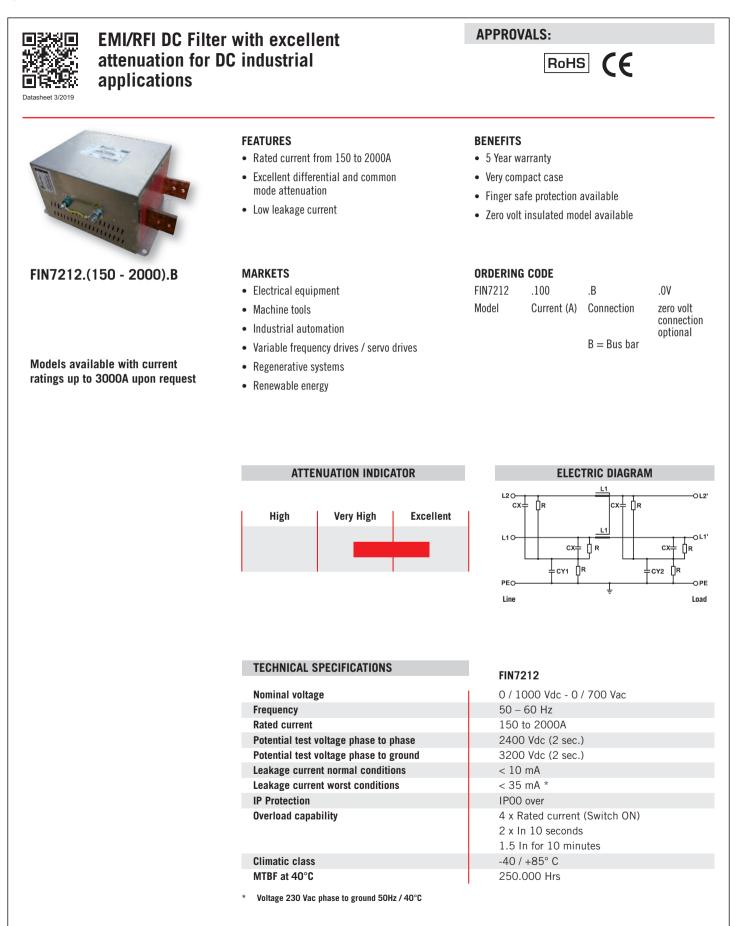



#### ASSEMBLY CONNECTION "B"



#### ASSEMBLY CONNECTION "B"




#### **ASSEMBLY CONNECTION "B"**

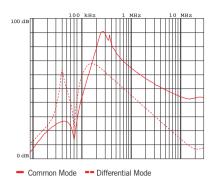














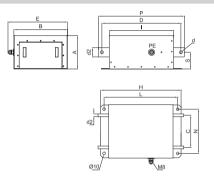

## ELECTRICAL CHARACTERISTICS CONNECTIONS

|         | MARAUTI                  | LKISTICS                 |                   | CONNECT   |                |            |                |
|---------|--------------------------|--------------------------|-------------------|-----------|----------------|------------|----------------|
|         |                          |                          |                   | LI        | NE             |            | PE             |
| FIN7212 | Rated<br>Current<br>40°C | Rated<br>Current<br>50°C | Power Loss<br>(W) | d<br>(mm) | Torque<br>(Nm) | d1<br>(mm) | Torque<br>(Nm) |
| .150.B  | 150                      | 135                      | 65                | M8        | 14             | M8         | 14             |
| .200.B  | 200                      | 180                      | 70                | M8        | 14             | M8         | 14             |
| .280.B  | 280                      | 250                      | 75                | M8        | 14             | M8         | 14             |
| .320.B  | 320                      | 290                      | 80                | M8        | 14             | M8         | 14             |
| .360.B  | 360                      | 325                      | 90                | M8        | 14             | M8         | 14             |
| .400.B  | 400                      | 360                      | 110               | M8        | 14             | M8         | 14             |
| .500.B  | 500                      | 450                      | 102               | M8        | 14             | M8         | 14             |
| .600.B  | 600                      | 540                      | 95                | M10       | 18             | M8         | 14             |
| .750.B  | 750                      | 675                      | 80                | M10       | 18             | M8         | 14             |
| .800.B  | 800                      | 720                      | 82                | M10       | 18             | M8         | 14             |
| .900.B  | 900                      | 810                      | 90                | M10       | 18             | M8         | 14             |
| .1000.B | 1000                     | 900                      | 100               | M10       | 18             | M8         | 14             |
| .1250.B | 1250                     | 1120                     | 105               | M10       | 18             | M8         | 14             |
| .1500.B | 1500                     | 1350                     | 110               | M10       | 18             | M8         | 14             |
| .1750.B | 1750                     | 1500                     | 125               | M10       | 18             | M8         | 14             |
| .2000.B | 2000                     | 1750                     | 132               | M10       | 18             | M8         | 14             |

#### **TYPICAL ATTENUATION**



Typical attenuation 150A - 2000A



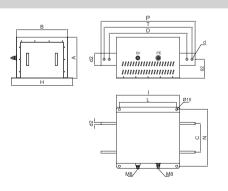



#### **MECHANICAL DIMENSIONS mm**

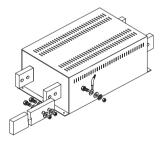
| FIN7212 | A   | В   | C   | D   | E   | H   | I.  | L   | N   | Р   | S    | d  | d2    | Weight<br>Kg. | Case |
|---------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|----|-------|---------------|------|
| .150.B  | 86  | 200 | 120 | 300 | 227 | 300 | 240 | 275 | 165 | 320 | 37   | 9  | 20x6  | 4.5           | 1    |
| .200.B  | 86  | 200 | 120 | 300 | 227 | 300 | 240 | 275 | 165 | 320 | 37   | 9  | 20x6  | 4.6           | 1    |
| .280.B  | 86  | 200 | 120 | 300 | 227 | 300 | 240 | 275 | 165 | 320 | 37   | 9  | 20x6  | 4.7           | 1    |
| .320.B  | 86  | 200 | 120 | 300 | 227 | 300 | 240 | 275 | 165 | 320 | 37   | 9  | 20x6  | 4.75          | 1    |
| .360.B  | 86  | 200 | 120 | 300 | 227 | 300 | 240 | 275 | 165 | 320 | 37   | 9  | 20x6  | 4.8           | 1    |
| .400.B  | 86  | 200 | 120 | 300 | 227 | 300 | 240 | 275 | 165 | 320 | 37   | 9  | 20x6  | 4.8           | 1    |
| .500.B  | 125 | 200 | 120 | 295 | 222 | 300 | 240 | 275 | 200 | 320 | 62.5 | 11 | 35x10 | 7.7           | 2    |
| .600.B  | 125 | 200 | 120 | 295 | 222 | 300 | 240 | 275 | 200 | 320 | 62.5 | 11 | 35x10 | 7.8           | 2    |
| .750.B  | 125 | 200 | 120 | 295 | 222 | 300 | 240 | 275 | 200 | 320 | 62.5 | 11 | 35x10 | 7.95          | 2    |

## CASE 1, 2




## ASSEMBLY CONNECTION "B"




## **MECHANICAL DIMENSIONS mm**

| FIN7212 | A   | В   | C   | D   | E   | H   | I   | L   | N   | Р   | S | Т   | d  | d2    | Weight<br>Kg. | Case |
|---------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|---|-----|----|-------|---------------|------|
| .800.B  | 200 | 250 | 140 | 380 | 277 | 300 | 310 | 280 | 278 | 460 | - | 430 | 11 | 50x10 | 15            | 3    |
| .900.B  | 200 | 250 | 140 | 380 | 277 | 300 | 310 | 280 | 278 | 460 | - | 430 | 11 | 50x10 | 15            | 3    |
| .1000.B | 200 | 250 | 140 | 380 | 277 | 300 | 310 | 280 | 278 | 460 | - | 430 | 11 | 60x10 | 16            | 4    |
| .1250.B | 200 | 250 | 140 | 380 | 277 | 300 | 310 | 280 | 278 | 460 | - | 430 | 11 | 60x10 | 17            | 4    |

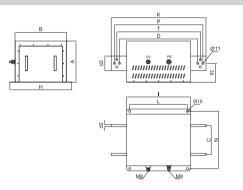
CASE 3, 4



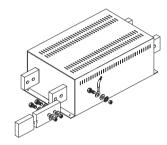
## ASSEMBLY CONNECTION "B"








DC Filter


### **MECHANICAL DIMENSIONS mm**

| FIN7212 | A   | В   | C   | D   | Н   | I   | L   | N   | K   | Р   | Т   | d  | d2    | Weight<br>Kg. | Case |
|---------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----|-------|---------------|------|
| .1500.B | 200 | 250 | 140 | 380 | 300 | 310 | 280 | 278 | 460 | 430 | 405 | 11 | 70x10 | 22            | 5    |
| .1750.B | 200 | 250 | 140 | 380 | 300 | 310 | 280 | 278 | 460 | 430 | 405 | 11 | 80x10 | 25            | 5    |
| .2000.B | 200 | 250 | 140 | 380 | 300 | 310 | 280 | 278 | 460 | 430 | 405 | 11 | 80x10 | 26            | 5    |

## CASE 5

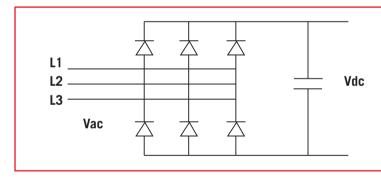


## ASSEMBLY CONNECTION "B"








## Introduction

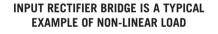
Power quality is a significant concern for today's manufacturing and power generation facilities. Finding the right solution for unbalanced loads is important. Two major power quality issues are harmonic distortion and reactive power generated by a low power factor.

Devices such as variable frequency drives, servo drives, LED light drivers and other devices that rectify AC to DC can generate harmonic distortion. It is important to limit the distortion under a certain level in order to reduce effects on other equipment in a facility.

Reactive power, which may be capacitive or inductive, causes the current waveform to change phases respective to the voltage waveform. The capacitance causes the current to lead and the inductance causes the current to lag.

In power transmission, due to the fact that most loads are inductive, there is more reactive power resulting in extra current being supplied. This leads to power loss and high temperatures with additional cost to the operator. For this reason industries are charged extra if they have a low power factor.




## **Harmonic Theory**

In a sinusoidal wave it is important to understand when harmonics are generated. The electrical network provides a sinusoidal voltage and the load absorbs a certain current which depends on the impedance of the load itself.

If the response is linear, the relationship between voltage and current is constant. In a resistive load for example, the current wave shape will be identical to the shape of the voltage wave that is sinusoidal and therefore without distortion.

If the load response is not linear, the current waveform will not follow the voltage waveform but will depend on the ratio between voltage and current at each instant. This will therefore result in a non-sinusoidal waveform.

A typical example of a non-linear load is represented by the input rectifier bridge built inside drives.



### **Harmonic Rating**

THD and TDD parameters are used to evaluate harmonic content.

THD or Total Harmonic Distortion is expressed as a percentage and is calculated according to the following formula:

$$\mathsf{THD} = \frac{\sqrt{I2^2 + I3^2 + I4^2 + I5^2 + \dots}}{I1}$$

Where I1 represents the current at that moment, I2, I3... represent the harmonic currents at that moment.

$$\mathsf{TDD} = \frac{\sqrt{I2^2 + I3^2 + I4^2 + I5^2 + \cdots}}{\mathrm{Ir}}$$

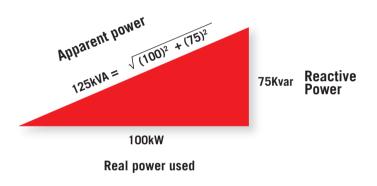
TDD or Total Demand Distortion is the same as calculating the THD but instead of referring to the fundamental current, it refers to the current Ir which is the rated current of a full load. The THD is measured by a percentage instant value and has no real indication of the amount of harmonic distortion without knowing the load current absorbed at that particular moment.

The TDD refers to the rated current and gives an immediate indication of the harmonic distortion, as the rated current is a known datum. THD and TDD coincide with the rated current.





#### **Power Factor**


Power factor is defined as a ratio between real power and apparent power in the circuit.

The measured value of power factor is the interval between -1 and 1. A power factor less than one indicates that the voltage and current waveforms are not in phase. A negative power factor occurs when the load generated power flows back to the source.

Typical examples of low power factor are:

- Linear loads: induction motors
- Non-linear loads: rectifiers

In a typical electric power system, a load with low power factor draws more current than a load with higher power factor. Higher current increases energy loss, requiring a larger cable wire and additional solution. For this reason, electrical utilities usually charge a higher price to facilities with low power factor.



Power Factor  $\cos \Theta = \frac{P, real power}{S, apparent power}$ 

### Problems Generated by Harmonics and Displacement Power Factor

Both harmonic distortion and displacement power cause the following problems in an installation:

- Oversizing of power cables, transformers and generators to support higher currents due to reactive energy
- Voltage harmonic distortion due to an unbalanced load propagated to other loads in the installation
- Disruptive resonance with other reactive components on the same power line
- Higher utility costs due to kVAR returning to the mains
- Communication interference
- Energy loss

#### **Harmonic Solutions**

The Enerdoor devices used to reduce current harmonic distortion are:

- DC chokes
- Line reactors
- Passive or active harmonic filters

Below are typical examples of a non-linear load with current THD % versus Enerdoor solutions.

| Technique                  | Current THD % |
|----------------------------|---------------|
| No mitigation              | 50 - 70%      |
| DC Choke                   | 30 - 40%      |
| 3% Line reactor + DC choke | 30 - 40%      |
| 5% Line reactor + DC choke | 25 - 35%      |
| Passive harmonic filter    | 5 - 10%       |
| Active front end           | 3 - 6%        |
| Active harmonic filter     | 5%            |

Enerdoor has developed a series of line reactors and passive and active harmonic filters to meet any type of requirements in terms of harmonic reduction and cost.

Line reactors and passive harmonic filters are recommended for single drive applications and sized by the total current. As an alternative, the active harmonic filter works in parallel and compensates current for single or multiple load applications operating under varied loads. They may be used for single applications or an entire facility.

#### **Power Factor**

The most common solution to compensate power factor correction is a capacitor bank. Capacitance compensates for inductive loads floating the power factor close to 1.

The Enerdoor static var generator is a superior alternative to the capacitor bank. It compensates the power factor using an Insulated Gate Bipolar Transistor (IGBT) instead of traditional capacitor banks. This superior technology is a modular system which may be installed in parallel to the main line.

Major advantages of a static var generator vs traditional capacitor banks:

- Not influenced by harmonic resonance
- Compensates both inductive and capacitive reactive power
- System is active. Voltage from the grid has no influence on the compensation capacity
- Very fast response





|                              |                                 |                   |         | COI             | CONNECTORS FEATURE |     |                              |          |               |                                |              |                      | APPLICATIONS |                      |          |                      |               |
|------------------------------|---------------------------------|-------------------|---------|-----------------|--------------------|-----|------------------------------|----------|---------------|--------------------------------|--------------|----------------------|--------------|----------------------|----------|----------------------|---------------|
| Filter<br>Selection<br>Guide | Description                     | Current Range (A) | Voltage | Terminal Blocks | MS                 | Bar | Additional Power Factor Port | Enclosed | /e Technology | Meets IEC61000-3-12 / IEEE 519 | Compact Case | able Frequency Drive | Automation   | er Factor Correction | C System | End-User Application | Approval      |
| Harmonic Filters             | Des                             | Cur               | Volt    | Term            | Screws             | Bus | Addi                         | Encl     | Active        | Meets                          | Com          | Variable             | Auto         | Power                | HVAC     | End                  | Appi          |
| FINFF                        | 3-phase                         | 1-750             | 0-600   | x               | x                  | ×   |                              |          |               |                                | ×            | ×                    | ×            |                      |          |                      | c <b>W</b> us |
| FINHRM                       | 3-phase                         | 16-200            | 400-600 | ×               |                    |     | ×                            | ×        |               |                                | ×            | ×                    | ×            |                      | ×        |                      |               |
| FINHRM5                      | 3-phase                         | 10-800            | 400-600 | x               | ×                  | ×   |                              |          |               | ×                              |              | ×                    |              |                      | ×        |                      |               |
| FINHRMAD                     | 3-phase<br>3-phase plus neutral | -                 | 208-690 | ×               |                    |     |                              | ×        | ×             | ×                              | ×            |                      | ×            |                      |          | ×                    |               |
| FINSVG                       | 3-phase<br>3-phase plus neutral | -                 | 208-690 | ×               |                    |     | ×                            | ×        | ×             |                                |              |                      |              | ×                    |          | ×                    | (I).          |





The Enerdoor harmonic filter series includes line reactors, passive and active harmonic filters, and static var generators.

Enerdoor line reactors are available with 3% and 5% impedance and with nominal voltage up to 600 Vac.

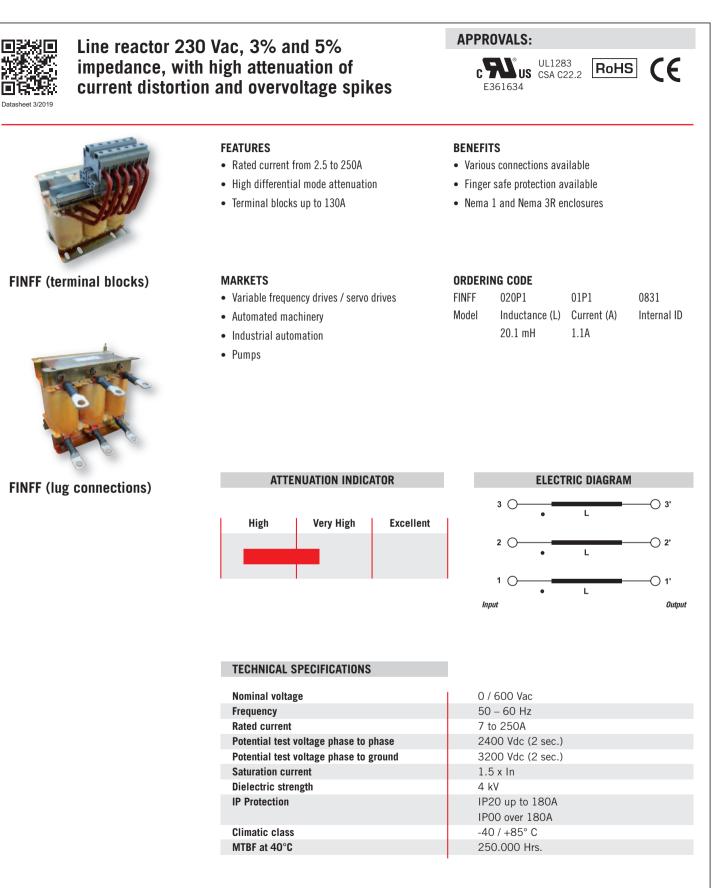
Enerdoor passive harmonic filter series is available up to 800A with nominal voltage up to 480 Vac. Custom filters are available with voltage up to 690 Vac. This series features different levels of attenuation offering the best solution to meet the EN61000-3-2, EN61000-3-12 and IEEE519 International Standard requirements.


As a standard, the FINHRM5 offers a current range up to 800A and the FINHRM up to 200A. The typical THDI reduction is <5% for the FINHRM5 and <15% for the FINHRM. Neither filter is effected by network impedance. This series is designed to guarantee a power factor greater than 0.9 considering an initial value of 0.7. An additional external capacitor to improve power factor correction may be included, as required.

This series reduces the effects of voltage dips less than 5 ms on the machine performance and reduces flicker emissions.

The Enerdoor active harmonic filter FINHRMAD is a modular design installed in parallel to the power line and reduces harmonics below 5%. This line is available from 230 Vac to 600 Vac with nominal current from 35A to 150A. Features include remote control and wall or panel mount installation.

Enerdoor static var generator FINSVG is a modular design installed in parallel to the power line and compensates reactive power in order to improve power factor.


# Harmonic Filters



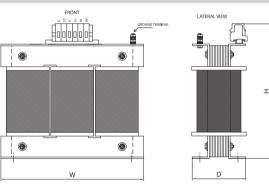




# FINFF - 230 Vac

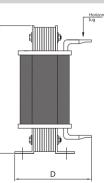







# FINFF - 230 Vac


#### **ELECTRICAL CHARACTERISTICS - MECHANICAL DIMENSIONS**


| HP@230<br>Vac | Rated<br>Current | FF 3% @230Vac   |     | en Fra<br>nensio |     | Weight<br>(Kg) | Case | Nema 1<br>Enclosure | FF 5% @230Vac   |     | en Fra<br>nensio |     | Weight<br>(Kg) | Case | Nema 1<br>Enclosure |
|---------------|------------------|-----------------|-----|------------------|-----|----------------|------|---------------------|-----------------|-----|------------------|-----|----------------|------|---------------------|
| Vac           | 40°C             |                 | Н   | W                | D   | (ing)          |      | Eliciosure          |                 | H   | W                | D   |                |      | Eliciosure          |
| 0.5           | 2.4              | FF5P05502P11291 | 120 | 120              | 80  | 1.8            | 1    | FINENCL.31          | FF010P602P10829 | 120 | 120              | 90  | 1.9            | 1    | FINENCL.31          |
| 0.75          | 3.5              | FF03P1203P41292 | 120 | 120              | 80  | 1.8            | 1    | FINENCL.31          | FF006P503P40827 | 120 | 120              | 90  | 2              | 1    | FINENCL.31          |
| 1             | 4.6              | FF02P2104P81293 | 120 | 120              | 80  | 1.9            | 1    | FINENCL.31          | FF004P604P80826 | 120 | 120              | 90  | 2.1            | 1    | FINENCL.31          |
| 2             | 7.6              | FF001P407P61294 | 120 | 120              | 90  | 2.4            | 1    | FINENCL.31          | FF02P9107P60832 | 165 | 160              | 120 | 4              | 1    | FINENCL.31          |
| 3             | 11               | FF0P96500111295 | 160 | 160              | 120 | 3.9            | 1    | FINENCL.31          | FF02P0100110833 | 165 | 160              | 120 | 4              | 1    | FINENCL.31          |
| 5             | 14               | FF0P75800141296 | 160 | 160              | 120 | 4              | 1    | FINENCL.31          | FF01P5800140834 | 165 | 160              | 130 | 4.7            | 1    | FINENCL.31          |
| 7             | 21               | FF0P50500211297 | 160 | 160              | 120 | 4              | 1    | FINENCL.31          | FF01P0500210835 | 165 | 160              | 130 | 5              | 1    | FINENCL.31          |
| 10            | 34               | FF0P26500401301 | 210 | 160              | 130 | 5              | 1    | FINENCL.41          | FF00P6400340837 | 250 | 180              | 135 | 7.6            | 1    | FINENCL.41          |
| 15            | 52               | FF0P20500521302 | 240 | 180              | 135 | 7.5            | 1    | FINENCL.41          | FF00P4200520840 | 250 | 180              | 145 | 9              | 1    | FINENCL.41          |
| 25            | 83               | FF0P12800831303 | 300 | 240              | 150 | 12             | 1    | FINENCL.41          | FF0P26800831002 | 300 | 240              | 180 | 22             | 1    | FINENCL.41          |
| 35            | 105              | FF0P10101051304 | 300 | 240              | 150 | 12.5           | 1    | FINENCL.41          | FF0P26301050976 | 300 | 240              | 185 | 23             | 1    | FINENCL.41          |
| 40            | 130              | FF0P08201301305 | 305 | 240              | 165 | 17             | 1    | FINENCL.41          | FF00P1701301003 | 350 | 300              | 190 | 27             | 1    | FINENCL.41          |
| 60            | 160              | FF0P06601601306 | 210 | 240              | 165 | 17             | 2    | FINENCL.41          | FF00P1501600954 | 300 | 300              | 210 | 29             | 2    | FINENCL.51          |
| 70            | 200              | FF0P05302001307 | 210 | 240              | 185 | 22             | 2    | FINENCL.41          | FF0P11102001004 | 300 | 220              | 300 | 33             | 2    | FINENCL.51          |
| 90            | 250              | FF0P04302501308 | 315 | 300              | 230 | 26             | 2    | FINENCL.51          | FF0P08902501005 | 300 | 230              | 300 | 41             | 2    | FINENCL.51          |

CASE 1



#### CASE 2



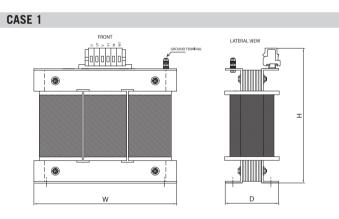




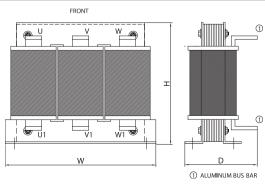


# FINFF - 400 Vac

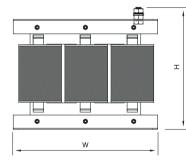


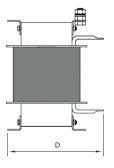

LINE REACTOR




# FINFF - 400 Vac

#### **ELECTRICAL CHARACTERISTICS - MECHANICAL DIMENSIONS**


| HP@400<br>Vac | Rated<br>Current | FF 3% @400Vac   | Open Frame<br>Dimensions |     | Weight<br>(Kg) | Case | Nema 1<br>Enclosure | FF 5% @400Vac | Open Frame<br>Dimensions |     |     | Weight<br>(Kg) | Case | Nema 1<br>Enclosure |             |
|---------------|------------------|-----------------|--------------------------|-----|----------------|------|---------------------|---------------|--------------------------|-----|-----|----------------|------|---------------------|-------------|
|               | 40°C             |                 | H                        | W   | D              |      | 1                   |               | 55003500000              | H   | W   | D              |      | 1                   |             |
| 3.5           | 6                | FF04P0500061818 | 120                      | 120 | 90             | 2.2  | 1                   | FINENCL.31    | FF6P7520006              | 160 | 160 | 120            | 3.3  | 1                   | FINENCL.31  |
| 8             | 12               | FF2P0250012     | 160                      | 160 | 120            | 3.6  | 1                   | FINENCL.31    | FF3P3750012              | 160 | 160 | 130            | 4.5  | 1                   | FINENCL.31  |
| 11            | 18               | FF1P17200181833 | 160                      | 160 | 120            | 3.7  | 1                   | FINENCL.31    | FF1P97500181834          | 160 | 160 | 130            | 4.6  | 1                   | FINENCL.31  |
| 15            | 24               | FF0P88100241819 | 180                      | 180 | 120            | 5.5  | 1                   | FINENCL.31    | FF1P4680024              | 180 | 180 | 130            | 7    | 1                   | FINENCL.31  |
| 20            | 32               | FF00P660032     | 180                      | 180 | 120            | 6    | 1                   | FINENCL.31    | FF01P010032              | 300 | 240 | 140            | 11   | 1                   | FINENCL.41  |
| 24            | 38               | FF0P63900381820 | 180                      | 180 | 135            | 7.5  | 1                   | FINENCL.31    | FF1P0660038              | 300 | 240 | 140            | 11.5 | 1                   | FINENCL.41  |
| 28            | 45               | FF0P5410045     | 300                      | 240 | 140            | 11   | 1                   | FINENCL.41    | FF000P90045              | 300 | 240 | 165            | 15.5 | 1                   | FINENCL.41  |
| 38            | 60               | FF0P40500601821 | 300                      | 240 | 140            | 11   | 1                   | FINENCL.41    | FF0P6750060              | 300 | 240 | 165            | 16.5 | 1                   | FINENCL.41  |
| 46            | 73               | FF0P3340073     | 300                      | 240 | 165            | 16   | 1                   | FINENCL.51    | FF0P5550073              | 300 | 240 | 165            | 17   | 1                   | FINENCL.51  |
| 57            | 90               | FF0P2670091     | 300                      | 240 | 165            | 16.5 | 1                   | FINENCL.51    | FF0P4450091              | 300 | 240 | 180            | 20   | 1                   | FINENCL.51  |
| 70            | 110              | FF0P22101101822 | 300                      | 240 | 165            | 17   | 1                   | FINENCL.51    | FF0P3680110              | 270 | 300 | 200            | 27   | 1                   | FINENCL.61  |
| 95            | 150              | FF0P16201501826 | 215                      | 240 | 250            | 21   | 1                   | FINENCL.61    | FF00P2701501828          | 270 | 300 | 210            | 31   | 2                   | FINENCL.61  |
| 114           | 180              | FF0P1350180     | 270                      | 300 | 200            | 26   | 1                   | FINENCL.61    | FF0P2250180              | 270 | 300 | 240            | 39   | 2                   | FINENCL.61  |
| 139           | 220              | FF00P1102201827 | 270                      | 300 | 200            | 28   | 2                   | FINENCL.61    | FF0P1840220              | 340 | 340 | 250            | 49   | 2                   | FINENCL.61  |
| 164           | 260              | FF0P0980260     | 270                      | 300 | 250            | 38   | 2                   | FINENCL.71    | FF0P1620260              | 340 | 340 | 250            | 52   | 2                   | FINENCL.71  |
| 196           | 310              | FF0P07803101829 | 270                      | 300 | 250            | 39   | 2                   | FINENCL.71    | FF0P1310310              | 340 | 340 | 260            | 60   | 2                   | FINENCL.71  |
| 234           | 370              | FF0P06006831824 | 340                      | 340 | 250            | 50   | 3                   | FINENCL.71    | FF0P1090370              | 340 | 340 | 280            | 82   | 3                   | FINENCL.81  |
| 290           | 460              | FF0P0540460     | 340                      | 340 | 270            | 61   | 3                   | FINENCL.81    | FF0P0900460              | 410 | 480 | 300            | 95   | 3                   | FINENCL.81  |
| 347           | 550              | FF0P04405501831 | 340                      | 340 | 270            | 63   | 3                   | FINENCL.81    | FF0P0740550              | 410 | 480 | 300            | 110  | 3                   | FINENCL.81  |
| 388           | 615              | FF0P03906161832 | 340                      | 340 | 280            | 80   | 3                   | FINENCL.81    | FF0P0660616              | 410 | 480 | 330            | 119  | 3                   | FINENCL.101 |
| 429           | 680              | FF0P0360683     | 410                      | 480 | 300            | 90   | 3                   | FINENCL.101   | FF0P06006831824          | 410 | 480 | 320            | 120  | 3                   | FINENCL.101 |
| 546           | 865              | FF0P02808661823 | 410                      | 480 | 300            | 100  | 3                   | FINENCL.101   | FF0P04708661825          | 650 | 600 | 370            | 173  | 3                   | FINENCL.101 |




CASE 3



CASE 2



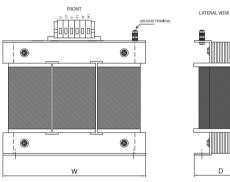




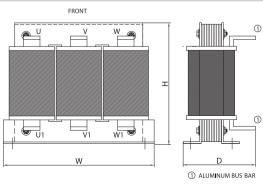


# FINFF - 480 Vac

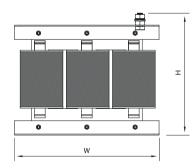


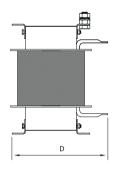



# FINFF - 480 Vac


#### **ELECTRICAL CHARACTERISTICS - MECHANICAL DIMENSIONS**

| HP@480<br>Vac | Rated<br>Current<br>40°C | FF 3% @480Vac    | Open Frame<br>Dimensions<br>H W D |     | Weight<br>(Kg) | Case | Nema 1<br>Enclosure | FF 5% @480Vac | Open Frame<br>Dimensions<br>H W D |     |     | Weight<br>(Kg) | Case | Nema 1<br>Enclosure |             |
|---------------|--------------------------|------------------|-----------------------------------|-----|----------------|------|---------------------|---------------|-----------------------------------|-----|-----|----------------|------|---------------------|-------------|
| 0.5           | 1.1                      | FF020P101P10831  | 120                               | 120 | 90             | 1.6  | 1                   | FINENCL.31    | FF033P501P10978                   | 120 | 120 | 90             | 2    | 1                   | FINENCL.31  |
| 0.75          | 1.6                      | FF0013P901P60830 | 120                               | 120 | 90             | 1.85 | 1                   | FINENCL.31    | FF0002301P60979                   | 120 | 120 | 90             | 2.1  | 1                   | FINENCL.31  |
| 1             | 2.1                      | FF010P602P10829  | 120                               | 120 | 90             | 1.9  | 1                   | FINENCL.31    | FF0001802P10980                   | 120 | 120 | 90             | 2.5  | 1                   | FINENCL.31  |
| 2             | 3.4                      | FF006P503P40827  | 120                               | 120 | 90             | 2    | 1                   | FINENCL.31    | FF0001103P40981                   | 120 | 120 | 90             | 2.8  | 1                   | FINENCL.31  |
| 3             | 4.8                      | FF004P604P80826  | 120                               | 120 | 90             | 2.1  | 1                   | FINENCL.31    | FF007P704P80982                   | 160 | 160 | 120            | 4    | 1                   | FINENCL.31  |
| 5             | 7.6                      | FF02P9107P60832  | 165                               | 160 | 120            | 4    | 1                   | FINENCL.31    | FF04P8407P60983                   | 160 | 160 | 120            | 4.5  | 1                   | FINENCL.31  |
| 7.5           | 11                       | FF02P0100110833  | 165                               | 160 | 120            | 4    | 1                   | FINENCL.31    | FF003P300110984                   | 160 | 160 | 130            | 5.3  | 1                   | FINENCL.31  |
| 10            | 14                       | FF01P5800140834  | 165                               | 160 | 130            | 4.7  | 1                   | FINENCL.31    | FF002P600140985                   | 160 | 160 | 130            | 5.5  | 1                   | FINENCL.31  |
| 15            | 21                       | FF01P0500210835  | 165                               | 160 | 130            | 5    | 1                   | FINENCL.31    | FF01P7600210986                   | 180 | 180 | 130            | 8    | 1                   | FINENCL.31  |
| 20            | 27                       | FF00P8200340836  | 250                               | 180 | 135            | 7.4  | 1                   | FINENCL.31    | FF001P300270987                   | 180 | 180 | 140            | 9    | 1                   | FINENCL.41  |
| 25            | 34                       | FF00P6400340837  | 250                               | 180 | 135            | 7.6  | 1                   | FINENCL.31    | FF001P200340988                   | 300 | 240 | 145            | 12   | 1                   | FINENCL.41  |
| 30            | 40                       | FF00P5500400839  | 250                               | 180 | 135            | 8    | 1                   | FINENCL.31    | FF00P9800460989                   | 300 | 240 | 145            | 12.5 | 1                   | FINENCL.41  |
| 40            | 52                       | FF00P3400650840  | 250                               | 180 | 145            | 9    | 1                   | FINENCL.41    | FF00P7500520990                   | 300 | 240 | 145            | 13   | 1                   | FINENCL.41  |
| 50            | 65                       | FF00P3400650841  | 250                               | 180 | 145            | 9    | 1                   | FINENCL.41    | FFP566300651951                   | 250 | 240 | 165            | 15   | 1                   | FINENCL.41  |
| 60            | 83                       | FF0P26800831002  | 300                               | 240 | 150            | 14   | 1                   | FINENCL.41    | FF00P5100830991                   | 300 | 240 | 180            | 23   | 1                   | FINENCL.41  |
| 75            | 104                      | FF0P26301050976  | 300                               | 240 | 180            | 22   | 1                   | FINENCL.41    | FF0P37501040992                   | 350 | 300 | 190            | 28   | 1                   | FINENCL.51  |
| 100           | 130                      | FF00P1701301003  | 300                               | 240 | 185            | 23   | 1                   | FINENCL.41    | FF000P301300993                   | 350 | 300 | 190            | 28.5 | 2                   | FINENCL.51  |
| 125           | 160                      | FF00P1501600954  | 350                               | 300 | 190            | 27   | 2                   | FINENCL.61    | FF00P2601600994                   | 300 | 300 | 210            | 33   | 2                   | FINENCL.61  |
| 150           | 200                      | FF0P11102001004  | 300                               | 300 | 210            | 29   | 2                   | FINENCL.61    | FF000P202000995                   | 300 | 300 | 250            | 41   | 2                   | FINENCL.61  |
| 200           | 250                      | FF0P08902501005  | 300                               | 300 | 220            | 33   | 2                   | FINENCL.61    | FF0P17702501853                   | 340 | 395 | 240            | 55   | 2                   | FINENCL.61  |
| 250           | 322                      | FFP068703221006  | 300                               | 300 | 230            | 41   | 3                   | FINENCL.61    | FFP135603251854                   | 340 | 395 | 250            | 62   | 3                   | FINENCL.61  |
| 300           | 414                      | FFP053504141007  | 375                               | 395 | 265            | 56   | 3                   | FINENCL.81    | FF0P10604151855                   | 340 | 395 | 260            | 80   | 3                   | FINENCL.61  |
| 400           | 515                      | FF0P04305151008  | 375                               | 395 | 275            | 63   | 3                   | FINENCL.81    | FFP085805151856                   | 340 | 395 | 280            | 90   | 3                   | FINENCL.101 |
| 475           | 600                      | FFP036906001009  | 375                               | 395 | 375            | 67   | 3                   | FINENCL.101   | FFP073606001857                   | 340 | 395 | 280            | 91   | 3                   | FINENCL.101 |
| 600           | 750                      | FFP029507501010  | 375                               | 395 | 300            | 80   | 3                   | FINENCL.101   | FF0P04907501858                   | 400 | 480 | 350            | 120  | 3                   | FINENCL.101 |


#### CASE 1

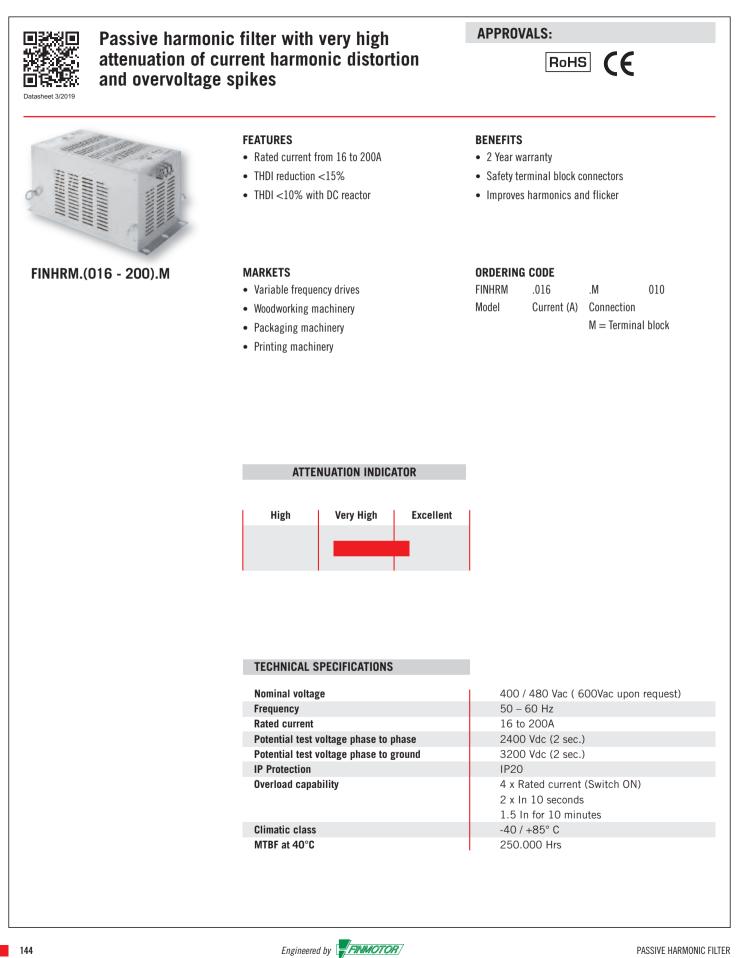



CASE 3



CASE 2










## FINHRM

Passive Harmonic Filter

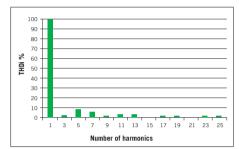




### FINHRM

#### **ELECTRICAL CHARACTERISTICS**

| FINHRM | Rated<br>Current<br>40°C | Rated<br>Current<br>50°C | Power Loss<br>(W) |
|--------|--------------------------|--------------------------|-------------------|
| .016.M | 16                       | 12                       | 80                |
| .030.M | 30                       | 24                       | 97                |
| .050.M | 50                       | 45                       | 170               |
| .075.M | 75                       | 68                       | 225               |
| .100.M | 100                      | 90                       | 257               |
| .150.M | 150                      | 135                      | 320               |
| .200.M | 200                      | 180                      | 575               |
| .215.M | 218                      | 215                      | 600               |

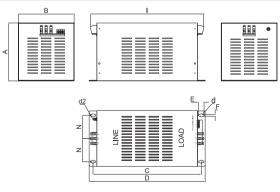

#### **CONNECTIONS**

|  |                         | LINE                                    |                            | P          | E              |
|--|-------------------------|-----------------------------------------|----------------------------|------------|----------------|
|  | Solid<br>Cable<br>(mm²) | Stranded<br>Cable<br>(mm <sup>2</sup> ) | Terminal<br>Torque<br>(Nm) | d2<br>(mm) | Torque<br>(Nm) |
|  | 0.2 - 10                | 0.2 - 6                                 | 1.2                        | M6         | 6              |
|  | 0.2 - 10                | 0.2 - 6                                 | 1.2                        | M6         | 6              |
|  | 0.2 - 10                | 0.2 - 6                                 | 1.2                        | M6         | 6              |
|  | 4 - 25                  | 6 - 35                                  | 4.5                        | M6         | 6              |
|  | 10 - 50                 | 10 - 50                                 | 4                          | M6         | 6              |
|  | 35 - 95                 | 35 - 95                                 | 20                         | M6         | 6              |
|  | 35 - 95                 | 35 - 95                                 | 20                         | M6         | 6              |
|  | 35 - 95                 | 35 - 95                                 | 20                         | M6         | 6              |

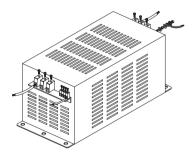
#### **TYPICAL MEASUREMENT**



Typical measurement without FINHRM




Typical measurement with FINHRM

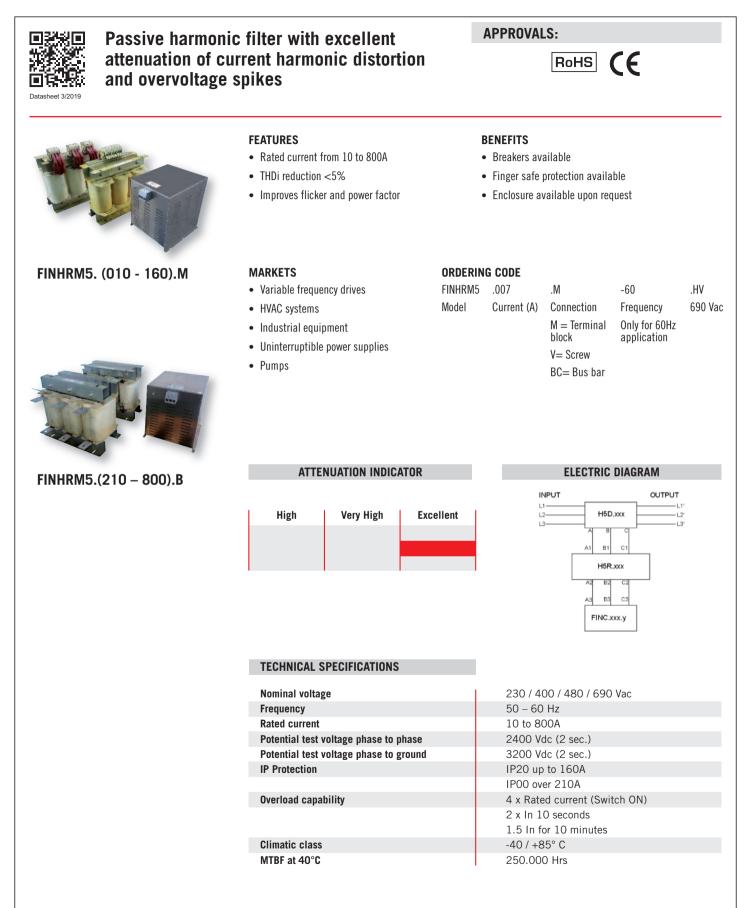

#### **MECHANICAL DIMENSIONS mm**

| FINHRM | A   | В   | C   | D   | E  | F | I   | N   | d  | d2    | Weight<br>Kg. | Case |
|--------|-----|-----|-----|-----|----|---|-----|-----|----|-------|---------------|------|
| .016.M | 300 | 250 | 400 | 440 | 29 | 9 | 396 | 100 | 16 | M6x20 | 25            | 1    |
| .030.M | 300 | 250 | 400 | 440 | 29 | 9 | 396 | 100 | 16 | M6x20 | 28.2          | 1    |
| .050.M | 300 | 290 | 560 | 600 | 29 | 9 | 585 | 120 | 16 | M6x20 | 45.5          | 1    |
| .075.M | 300 | 290 | 560 | 600 | 29 | 9 | 585 | 120 | 16 | M6x20 | 65            | 1    |
| .100.M | 320 | 440 | 660 | 700 | 29 | 9 | 706 | 195 | 16 | M6x20 | 83            | 1    |
| .150.M | 320 | 440 | 660 | 700 | 29 | 9 | 706 | 195 | 16 | M6x20 | 104           | 1    |
| .200.M | 450 | 504 | 860 | 900 | 29 | 9 | 920 | 225 | 16 | M6x20 | 190           | 1    |
| .215.M | 450 | 504 | 860 | 900 | 29 | 9 | 920 | 225 | 16 | M6x20 | 195           | 1    |

#### CASE 1



#### ASSEMBLY CONNECTION "M"







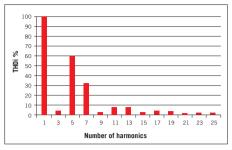

### FINHRM5

Passive Harmonic Filter

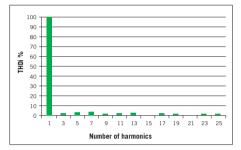


Engineered by




### FINHRM5

CONNECTIONS


#### ELECTRICAL CHARACTERISTICS

|         |                           | Rated Po   | wer (KW)   | Power I    | Loss (W)   |                                      | LINE                                    |                             |           | PE             |
|---------|---------------------------|------------|------------|------------|------------|--------------------------------------|-----------------------------------------|-----------------------------|-----------|----------------|
| FINHRM5 | Rated<br>Current<br>50° C | 400<br>Vac | 480<br>Vac | 400<br>Vac | 480<br>Vac | Solid<br>Cable<br>(mm <sup>2</sup> ) | Stranded<br>Cable<br>(mm <sup>2</sup> ) | Terminal<br>Torque<br>(mm²) | d<br>(mm) | Torque<br>(Nm) |
| .010.M  | 10                        | 4          | 5.5        | 55         | 80         | 0.2-10                               | 0.2-6                                   | 1.2                         | M10       | 6              |
| .016.M  | 16                        | 7.5        | 11         | 105        | 160        | 0.2-10                               | 0.2-6                                   | 1.2                         | M10       | 6              |
| .032.M  | 32                        | 15         | 18.5       | 210        | 275        | 0.2-10                               | 0.2-6                                   | 1.2                         | M10       | 6              |
| .045.M  | 45                        | 22         | 30         | 273        | 370        | 0.5-10                               | 0.5-10                                  | 1.8                         | M10       | 6              |
| .080.M  | 80                        | 40         | 48         | 398        | 475        | 0.5-10                               | 0.5-10                                  | 1.8                         | M10       | 6              |
| .120.M  | 120                       | 60         | 72         | 492        | 672        | 6-35                                 | 4-25                                    | 4.5                         | M10       | 6              |
| .160.M  | 160                       | 80         | 96         | 590        | 710        | 10-50                                | 10-50                                   | 4.0                         | M10       | 6              |

#### **TYPICAL MEASUREMENT**

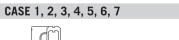


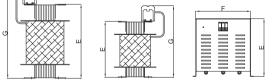
Typical measurement without FINHRM5



Typical measurement with FINHRM5

|         |                           | Rated Po   | wer (KW)   | Power L    | oss (W)    | L         | NE             | ſ    | РЕ             |
|---------|---------------------------|------------|------------|------------|------------|-----------|----------------|------|----------------|
| FINHRM5 | Rated<br>Current<br>50° C | 400<br>Vac | 480<br>Vac | 400<br>Vac | 480<br>Vac | l<br>(mm) | Torque<br>(Nm) | (mm) | Torque<br>(Nm) |
| .210.B  | 210                       | 105        | 126        | 610        | 750        | M12       | 20             | M10  | 18             |
| .260.B  | 260                       | 130        | 160        | 780        | 940        | M12       | 20             | M10  | 18             |
| .320.B  | 320                       | 160        | 200        | 940        | 1150       | M8        | 14             | M10  | 18             |
| .400.B  | 400                       | 200        | 241        | 980        | 1200       | M8        | 14             | M10  | 18             |
| .460.B  | 460                       | 230        | 277        | 1280       | 1410       | M8        | 14             | M10  | 18             |
| .600.B  | 600                       | 280        | 360        | 1480       | 1750       | M8        | 14             | M10  | 18             |
| .750.B  | 750                       | 360        | 440        | 1690       | 1920       | M8        | 14             | M10  | 18             |
| .800.B  | 800                       | 380        | 460        | 1730       | 1970       | M12       | 25             | M10  | 18             |




#### **MECHANICAL DIMENSIONS mm**

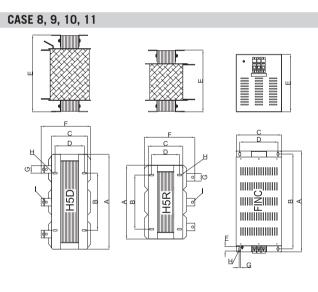
|                |            |            |            |     |     |            |     |      | Waight        |      |
|----------------|------------|------------|------------|-----|-----|------------|-----|------|---------------|------|
| FINHRM5.010.M  | Α          | В          | C          | D   | E   | F          | G   | H    | Weight<br>Kg. | Case |
| H5D.010.M      | 240        | 200        | 130        | 100 | 210 | -          | 258 | 8    | 16.2          | 1    |
| H5R.010.M      | 180        | 150        | 120        | 90  | 160 | -          | 208 | 8    | 9.2           | 1    |
| FINC.010.M *   | 260        | 100        | 135        | 120 | 210 | 104        | 5   | -    | 2             | 1    |
|                |            |            |            |     |     |            |     |      | Weight        |      |
| FINHRM5.016.M  | Α          | В          | C          | D   | E   | F          | G   | H    | Weight<br>Kg. | Case |
| H5D.016.M      | 240        | 200        | 130        | 95  | 210 | -          | 275 | 8    | 28            | 2    |
| H5R.016.M      | 180        | 150        | 120        | 90  | 156 | -          | 205 | 8    | 16            | 2    |
| FINC.016.M *   | 260        | 100        | 135        | 120 | 210 | 104        | 5   | 6    | 4             | 2    |
|                |            |            |            |     |     |            |     |      | Weight        |      |
| FINHRM5.032.M  | Α          | B          | C          | D   | E   | F          | G   | H    | Kg.           | Case |
| H5D.032.M      | 300        | 250        | 150        | 110 | 260 | 180        | 334 | 8    | 31            | 3    |
| H5R.032.M      | 240        | 200        | 130        | 100 | 210 | 160        | 270 | 8    | 19            | 3    |
| FINC.032.M *   | 300        | 120        | 135        | 120 | 320 | 104        | 5   | -    | 6             | 3    |
|                |            |            |            |     | _   | _          |     |      | Weight        | 0    |
| FINHRM5.045.M  | Α          | В          | C          | D   | E   | F          | G   | H    | Weight<br>Kg. | Case |
| H5D.045.M      | 300        | 250        | 150        | 110 | 260 | 180        | 334 | 8    | 44            | 4    |
| H5R.045.M      | 240        | 200        | 130        | 100 | 210 | 160        | 270 | 8    | 31            | 4    |
| FINC.045.M *   | 300        | 120        | 135        | 120 | 320 | 104        | 5   | -    | 7             | 4    |
| FINHRM5.080.M  |            | n          | •          | n   |     | -          | 0   |      | Weight<br>Kg. | Case |
|                | A          | В          | C          | D   | E   | F          | G   | H    |               |      |
| H5D.080.M      | 360        | 260        | 185        | 145 | 310 | 220        | 397 | 8    | 65            | 5    |
| H5R.080.M      | 360        | 260        | 155        | 115 | 310 | 190        | 397 | 8    | 46            | 5    |
| FINC.080.M *   | 350        | 130        | 135        | 120 | 380 | 104        | 5   | -    | 8             | 5    |
| FINHRM5.120.M  | A          | В          | C          | D   | E   | F          | G   | H    | Weight<br>Kg. | Case |
| H5D.120.M      |            |            |            |     |     |            |     |      |               |      |
|                | 480        | 360<br>260 | 230<br>185 | 185 | 410 | 320<br>270 | 505 | 10   | 120<br>68     | 6    |
| H5R.120.M      | 360        |            |            | 145 | 310 |            | 410 | 8    | 68<br>15      | 6    |
| FINC.120.M *   | 350        | 130        | 334        | 319 | 320 | 304        | 5   | -    | 15            | 6    |
| FINHRM5.160.M  | А          | В          | C          | D   | E   | F          | G   | H    | Weight        | Case |
| H5D.160.M      | 480        | 360        | 230        | 185 | 410 | 270        | 505 | 10   | Kg.<br>123    | 7    |
| H5R.160.M      | 480        | 360        | 230        | 185 | 410 | 270        | 505 | 10   | 87            | 7    |
| FINC.160.M *   | 480<br>350 | 130        | 200        | 219 | 380 | 240        | 505 | - 10 | 16            | 7    |
| 1114G. 100.141 | 300        | 130        | 204        | L1J | 200 | 204        | J   | -    | 10            | 1    |

\* 60Hz option available, FINC.xxx.M-60







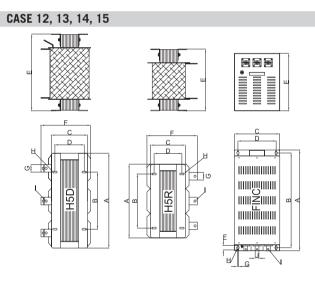





#### **MECHANICAL DIMENSIONS mm**

| FINHRM5.210.B | A   | В   | C   | D   | E   | F   | G    | H  | I. | Weight<br>Kg. | Case |
|---------------|-----|-----|-----|-----|-----|-----|------|----|----|---------------|------|
| H5D.210.B     | 480 | 360 | 260 | 215 | 420 | 310 | 50x5 | 10 | 12 | 154           | 8    |
| H5R.210.B     | 480 | 360 | 230 | 185 | 420 | 280 | 30x7 | 10 | 12 | 119           | 8    |
| FINC.210.M *  | 350 | 130 | 334 | 319 | 380 | 5   | 9    | 16 | -  | 18            | 8    |
| FINHRM5.260.B | A   | В   | C   | D   | E   | F   | G    | H  | I  | Weight<br>Kg. | Case |
| H5D.260.B     | 480 | 360 | 280 | 230 | 420 | 340 | 50x5 | 10 | 12 | 172           | 9    |
| H5R.260.B     | 480 | 360 | 230 | 185 | 420 | 300 | 50x5 | 10 | 12 | 122           | 9    |
| FINC.260.M *  | 670 | 630 | 300 | 254 | 382 | 29  | 9    | 16 | -  | 30            | 9    |
| FINHRM5.320.B | A   | В   | C   | D   | E   | F   | G    | H  | I  | Weight<br>Kg. | Case |
| H5D.320.B     | 600 | 380 | 230 | 185 | 520 | 330 | 50x5 | 10 | 15 | 195           | 10   |
| H5R.320.B     | 480 | 360 | 240 | 195 | 420 | 280 | 50x5 | 10 | 15 | 130           | 10   |
| FINC.320.M *  | 670 | 630 | 300 | 254 | 382 | 29  | 9    | 16 | -  | 33            | 10   |
| FINHRM5.400.B | A   | В   | C   | D   | E   | F   | G    | H  | I  | Weight<br>Kg. | Case |
| H5D.400.B     | 600 | 380 | 260 | 220 | 520 | 360 | 60x5 | 10 | 15 | 256           | 11   |
| H5R.400.B     | 480 | 360 | 260 | 210 | 420 | 320 | 50x5 | 10 | 15 | 158           | 11   |
| FINC.400.M *  | 670 | 630 | 300 | 254 | 382 | 29  | 9    | 16 | -  | 35            | 11   |

\* 60Hz option available, FINC.xxx.M-60






#### **MECHANICAL DIMENSIONS mm**

| FINHRM5.480.B                                          | A                             | В                      | C                             | D                      | E                      | F                     | G                              | H                   | I       | J.              | Weight<br>Kg.                            | Case                   |
|--------------------------------------------------------|-------------------------------|------------------------|-------------------------------|------------------------|------------------------|-----------------------|--------------------------------|---------------------|---------|-----------------|------------------------------------------|------------------------|
| H5D.480.B                                              | 600                           | 380                    | 280                           | 230                    | 520                    | 330                   | 60x5                           | 10                  | 15      | -               | 285                                      | 12                     |
| H5R.480.B                                              | 480                           | 360                    | 280                           | 230                    | 420                    | 360                   | 60x5                           | 10                  | 15      | -               | 178                                      | 12                     |
| FINC.480.B*                                            | 800                           | 760                    | 300                           | 254                    | 382                    | 29                    | 9                              | 16                  | 9       | 25x10           | 40                                       | 12                     |
| FINHRM5.600.B                                          | A                             | В                      | C                             | D                      | E                      | F                     | G                              | H                   | I       | J               | Weight<br>Kg.                            | Case                   |
| H5D.600.B                                              | 660                           | 540                    | 275                           | 230                    | 610                    | 320                   | 60x5                           | 10                  | 15      | -               | 315                                      | 13                     |
| H5R.600.B                                              | 620                           | 380                    | 255                           | 210                    | 510                    | 300                   | 60x5                           | 10                  | 15      | -               | 240                                      | 13                     |
| FINC.600.B*                                            | 800                           | 760                    | 300                           | 254                    | 382                    | 29                    | 9                              | 16                  | 9       | 25x10           | 45                                       | 13                     |
| FINHRM5.750.B                                          |                               |                        |                               | _                      | -                      |                       | G                              | Н                   |         |                 | Weight                                   | 0                      |
| THATIKING.750.D                                        | A                             | В                      | C                             | D                      | E                      | F                     | u                              | n                   | l       | J               | Kg.                                      | Case                   |
| H5D.750.B                                              | А<br>660                      | в<br>540               | C<br>320                      | <b>U</b><br>240        | E<br>650               | 350                   | 50x10                          | n<br>12             | -       | -               | <b>Kg</b> .<br>400                       | 14                     |
|                                                        |                               |                        |                               |                        |                        |                       |                                |                     | -       | -               | Kg.                                      |                        |
| H5D.750.B                                              | 660                           | 540                    | 320                           | 240                    | 650                    | 350                   | 50x10                          | 12                  |         |                 | <b>Kg</b> .<br>400                       | 14                     |
| H5D.750.B<br>H5R.750.B                                 | 660<br>540                    | 540<br>420             | 320<br>300                    | 240<br>230             | 650<br>670             | 350<br>330            | 50x10<br>60x5                  | 12<br>12            | -       | -               | Kg.<br>400<br>250                        | 14<br>14               |
| H5D.750.B<br>H5R.750.B<br>FINC.750.B*                  | 660<br>540<br>750             | 540<br>420<br>710      | 320<br>300<br>585             | 240<br>230<br>540      | 650<br>670<br>382      | 350<br>330<br>29      | 50x10<br>60x5<br>9             | 12<br>12<br>16      | -       | -               | Kg.<br>400<br>250<br>47                  | 14<br>14<br>14         |
| H5D.750.B<br>H5R.750.B<br>FINC.750.B*<br>FINHRM5.800.B | 660<br>540<br>750<br><b>A</b> | 540<br>420<br>710<br>B | 320<br>300<br>585<br><b>C</b> | 240<br>230<br>540<br>D | 650<br>670<br>382<br>E | 350<br>330<br>29<br>F | 50x10<br>60x5<br>9<br><b>G</b> | 12<br>12<br>16<br>H | -<br>11 | -<br>30x15<br>J | Kg.<br>400<br>250<br>47<br>Weight<br>Kg. | 14<br>14<br>14<br>Case |

\* 60Hz option available, FINC.xxx.M-60





|                  | Active harmonic fi                     | Iter with                                                                                                                                                                                                          |          | AP                                        | PROVALS:                                                                   |                   |                |
|------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------------------------------------|----------------------------------------------------------------------------|-------------------|----------------|
| Datasheet 3/2019 | excellent attenuat<br>current harmonic |                                                                                                                                                                                                                    |          |                                           | F                                                                          | RoHS CE           |                |
|                  | 00000                                  | <ul> <li>FEATURES</li> <li>Advanced digital control</li> <li>Rack unit or wall mounting insta<br/>options</li> <li>Modular system</li> <li>Remote control RS485 standard<br/>(Modbus-Profibus optional)</li> </ul> | allation | over cr<br>• Unaffe<br>• Touch<br>• Compe | ete protection fo<br>urrent and over<br>ected by network<br>screen LCD HMI | conditions        |                |
|                  | (050 150)                              | MARKETS                                                                                                                                                                                                            | ORDERING | CUDE                                      |                                                                            |                   |                |
|                  | .(050 - 150)                           |                                                                                                                                                                                                                    | FINHRMAD |                                           | Б                                                                          | 25                | .R             |
|                  |                                        | Variable frequency drive                                                                                                                                                                                           |          |                                           | .5                                                                         | .3F               |                |
|                  |                                        | <ul> <li>Commercial building</li> </ul>                                                                                                                                                                            | Model    | Current<br>(A)                            | 4 = 400V                                                                   | 3F = 3phase       | R = Rack mount |
|                  |                                        | <ul> <li>Oil and water plant</li> </ul>                                                                                                                                                                            |          | (A)                                       | 5 = 480V                                                                   | 4F = 3phase       | W = Wall mount |
|                  |                                        | <ul> <li>Process automation</li> </ul>                                                                                                                                                                             |          |                                           |                                                                            | with neutral      |                |
|                  |                                        | • End-user plant                                                                                                                                                                                                   |          |                                           |                                                                            |                   |                |
|                  |                                        |                                                                                                                                                                                                                    |          |                                           |                                                                            |                   |                |
|                  |                                        |                                                                                                                                                                                                                    |          |                                           |                                                                            |                   |                |
|                  |                                        | ATTENUATION INDIC                                                                                                                                                                                                  | ATOR     |                                           |                                                                            |                   |                |
|                  |                                        |                                                                                                                                                                                                                    |          |                                           |                                                                            |                   |                |
|                  |                                        |                                                                                                                                                                                                                    |          |                                           |                                                                            |                   |                |
|                  |                                        | High Very High                                                                                                                                                                                                     | Excellen | t                                         |                                                                            |                   |                |
|                  |                                        |                                                                                                                                                                                                                    |          |                                           |                                                                            |                   |                |
|                  |                                        |                                                                                                                                                                                                                    |          |                                           |                                                                            |                   |                |
|                  |                                        |                                                                                                                                                                                                                    |          |                                           |                                                                            |                   |                |
|                  |                                        |                                                                                                                                                                                                                    |          |                                           |                                                                            |                   |                |
|                  |                                        |                                                                                                                                                                                                                    |          |                                           |                                                                            |                   |                |
|                  |                                        |                                                                                                                                                                                                                    |          |                                           |                                                                            |                   |                |
|                  |                                        | TECHNICAL SPECIFICATION                                                                                                                                                                                            | S        |                                           |                                                                            |                   |                |
|                  |                                        | Nominal voltage                                                                                                                                                                                                    |          |                                           | 400 / 480 Va                                                               | С                 |                |
|                  |                                        | Frequency                                                                                                                                                                                                          |          |                                           | 50 – 60 Hz -                                                               |                   |                |
|                  |                                        | Reactive power compensation                                                                                                                                                                                        |          |                                           | 50 to 150A                                                                 |                   |                |
|                  |                                        | Overall efficiency                                                                                                                                                                                                 |          |                                           | >97%                                                                       |                   |                |
|                  |                                        | Power grid structure                                                                                                                                                                                               |          |                                           | 3-phase, 3-pl                                                              | nase plus neutral |                |
|                  |                                        | Current transformer                                                                                                                                                                                                |          |                                           | 150:5 ~ 10,0                                                               | 000:5             |                |
|                  |                                        | Harmonic filtering range                                                                                                                                                                                           |          |                                           | 2 <sup>nd</sup> to 50th or                                                 | rders             |                |
|                  |                                        | Reaction time                                                                                                                                                                                                      |          |                                           | <50 us                                                                     |                   |                |
|                  |                                        | Overall response time                                                                                                                                                                                              |          |                                           | <5 ms                                                                      |                   |                |
|                  |                                        | Switching frequency                                                                                                                                                                                                |          |                                           | 20 KHz                                                                     |                   |                |
|                  |                                        | Communication ports                                                                                                                                                                                                |          |                                           | RS485, Ethe                                                                |                   |                |
|                  |                                        | Communication protocols                                                                                                                                                                                            |          |                                           | Modbus, TCP                                                                |                   |                |
|                  |                                        | Module display interface                                                                                                                                                                                           |          |                                           |                                                                            | r LCD touch scre  |                |
|                  |                                        | Altitude                                                                                                                                                                                                           |          |                                           |                                                                            | ower decreases by | 1% every 100m  |
|                  |                                        | Operating temperature                                                                                                                                                                                              |          |                                           | -10°C / + 40°<br>IP 20                                                     | C                 |                |
|                  |                                        | Protection class                                                                                                                                                                                                   |          |                                           |                                                                            |                   |                |
|                  |                                        | Noise level<br>Color                                                                                                                                                                                               |          |                                           | <56 dB                                                                     | abt grav          |                |
|                  |                                        | 00101                                                                                                                                                                                                              |          | I.                                        | Ral 7035, Li                                                               | Sur Ridy          |                |
|                  |                                        |                                                                                                                                                                                                                    |          |                                           |                                                                            |                   |                |
|                  |                                        |                                                                                                                                                                                                                    |          |                                           |                                                                            |                   |                |
|                  |                                        |                                                                                                                                                                                                                    |          |                                           |                                                                            |                   |                |



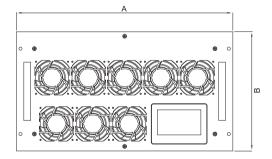


### FINHRMAD

#### **ELECTRICAL CHARACTERISTICS**

| FINHRMAD     | Rated Current (A) | Rated Voltage<br>(Vac) | Power Grid<br>Structure | Cooling Mode | Response Time |
|--------------|-------------------|------------------------|-------------------------|--------------|---------------|
| .050.4.X.Y.Z | 50                | 400 (-10%+10%)         | 3P3W ; 3P4W             | Air 75L/sec  | <5ms          |
| .050.5.X.Y.Z | 50                | 480 (-10%+10%)         | 3P3W                    | Air 75L/sec  | <5ms          |
| .100.4.X.Y.Z | 100               | 400 (-10%+10%)         | 3P3W; 3P4W              | Air 75L/sec  | <5ms          |
| .100.5.X.Y.Z | 100               | 480 (-10%+10%)         | 3P3W                    | Air 75L/sec  | <5ms          |
| .150.4.X.Y.Z | 150               | 400 (-10%+10%)         | 3P3W; 3P4W              | Air 75L/sec  | <5ms          |
| .050.5.X.Y.Z | 150               | 480 (-10%+10%)         | 3P3W                    | Air 75L/sec  | <5ms          |

 $X = \text{power grid structure} \quad Y = \text{mounting type} \quad Z = HMI \text{ display}$ 


208Vac and 600Vac version available


#### **MECHANICAL DIMENSIONS mm**

| FINHRMAD     | A   | В   | C   | D   | Weight<br>Kg. |
|--------------|-----|-----|-----|-----|---------------|
| .050.4.X.Y.Z | 483 | 132 | 653 | 610 | 32            |
| .050.5.X.Y.Z | 483 | 132 | 653 | 610 | 32            |
| .100.4.X.Y.Z | 483 | 266 | 653 | 610 | 38            |
| .100.5.X.Y.Z | 483 | 266 | 653 | 610 | 38            |
| .150.4.X.Y.Z | 483 | 266 | 653 | 610 | 40            |
| .050.5.X.Y.Z | 483 | 266 | 653 | 610 | 40            |

Wall mounted available

#### **RACK MOUNTED**









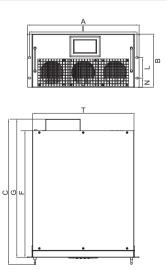
| Datasheet 3/2019 |            | nerator with excellent<br>of inductive and<br>er |                  | APPROVALS:              |                               |                                |               |              |  |  |  |  |
|------------------|------------|--------------------------------------------------|------------------|-------------------------|-------------------------------|--------------------------------|---------------|--------------|--|--|--|--|
|                  |            | FEATURES                                         |                  | BENEF                   | ודפ                           |                                |               |              |  |  |  |  |
| French           | way A A    | <ul> <li>No capacitor bank</li> </ul>            |                  |                         | pensation fro                 | m 30 KVAP                      |               |              |  |  |  |  |
|                  |            |                                                  |                  |                         |                               |                                |               |              |  |  |  |  |
|                  |            | Controls PF compensation                         |                  |                         |                               | r inductive and c              | apacitive rea | active power |  |  |  |  |
|                  |            | Unaffected by harmonic reso                      | nance            |                         | ılar design                   |                                |               |              |  |  |  |  |
| an and a second  | =          | <ul> <li>High speed response</li> </ul>          |                  |                         | ote control R<br>bus-Profibus | S485 as standar<br>s optional) | d             |              |  |  |  |  |
| EINSVC (O        | 30 - 100)  | MARKETS                                          | ORDERING         |                         |                               |                                |               |              |  |  |  |  |
| FIN3VG.(U        | 130 - 100) | Soft start motors                                | FINSVG           | .100                    | .4                            | .4F                            | .w            | .D           |  |  |  |  |
|                  |            |                                                  | Model            | Kvar                    | . <del>4</del><br>4 = 400V    | 3F = 3phase                    | R = Rack      | D = with     |  |  |  |  |
|                  |            | DC motors                                        | Wouer            | rvai                    | 4 = 400V                      | 3r = 3pnase                    | mount         | HMI          |  |  |  |  |
|                  |            | Oil and water plants                             |                  |                         | 5 = 480V                      | 4F = 3phase                    | W = Wall      | C = without  |  |  |  |  |
|                  |            | <ul> <li>Processing machinery</li> </ul>         |                  |                         | 6 = 600V                      | with neutral                   | mount         | HMI          |  |  |  |  |
|                  |            | <ul> <li>End-user facilities</li> </ul>          |                  |                         | 7 = 690V                      |                                |               |              |  |  |  |  |
|                  |            | High Very High                                   |                  | EIIL                    |                               |                                |               |              |  |  |  |  |
|                  |            |                                                  |                  |                         |                               |                                |               |              |  |  |  |  |
|                  |            | Nominal voltage                                  |                  |                         | 400 / 69                      |                                |               |              |  |  |  |  |
|                  |            | Frequency<br>Reactive newer compensati           | on               |                         | 50 - 60<br>30-100             | Hz -5 / +3%                    |               |              |  |  |  |  |
|                  |            | Reactive power compensati<br>PF Compensation     |                  |                         | 0.99                          | 11101                          |               |              |  |  |  |  |
|                  |            | Overall efficiency                               |                  |                         | >97%                          |                                |               |              |  |  |  |  |
|                  |            | Power grid structure                             |                  |                         |                               | , 3-phase plus                 | neutral       |              |  |  |  |  |
|                  |            | Current transformer                              |                  |                         |                               | 10,000:5                       |               |              |  |  |  |  |
|                  |            | Reaction time                                    |                  |                         | <50 us                        |                                |               |              |  |  |  |  |
|                  |            | Overall response time                            |                  |                         | <5 ms                         |                                |               |              |  |  |  |  |
|                  |            | Switching frequency                              |                  |                         | 20 kHz                        |                                |               |              |  |  |  |  |
|                  |            | Communication ports                              |                  |                         | RS485                         |                                |               |              |  |  |  |  |
|                  |            | Communication protocols                          |                  |                         | Modbus,                       |                                |               |              |  |  |  |  |
|                  |            | Module display interface                         | torface          |                         |                               | LCD touch ser                  |               |              |  |  |  |  |
|                  |            | Optional external display in                     | leitace          |                         |                               | LCD touch scr                  |               |              |  |  |  |  |
|                  |            | Altitude<br>Operating temperature                |                  |                         |                               | )ver power decre<br>⊾ 40°C     | ases by 1% (  | every 100m   |  |  |  |  |
|                  |            |                                                  |                  | -10°C / + 40°C<br>IP 20 |                               |                                |               |              |  |  |  |  |
|                  |            | Noise level                                      | Protection class |                         |                               |                                | <56 dB        |              |  |  |  |  |
|                  |            | Color                                            |                  |                         |                               | 5, Black                       |               |              |  |  |  |  |
|                  |            |                                                  |                  |                         |                               | ,                              |               |              |  |  |  |  |



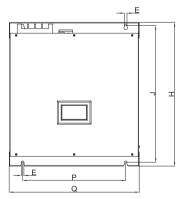


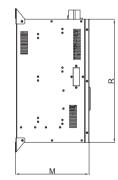
### FINSVG

#### **ELECTRICAL CHARACTERISTICS**


| FINSVG       | Rated Compensation<br>(Kvar) | Rated Voltage<br>(Vac) | Power Grid<br>Structure | Cooling Mode | Response Time |
|--------------|------------------------------|------------------------|-------------------------|--------------|---------------|
| .030.4.X.Y.Z | 30                           | 400 (-40%+15%)         | 3P3W ; 3P4W             | Air 75L/sec  | <5ms          |
| .040.5.X.Y.Z | 40                           | 480 (-20%+15%)         | 3P3W ; 3P4W             | Air 359L/sec | <5ms          |
| .050.4.X.Y.Z | 50                           | 400 (-40%+15%)         | 3P3W ; 3P4W             | Air 75L/sec  | <5ms          |
| .063.5.X.Y.Z | 63                           | 480 (-20%+15%)         | 3P3W ; 3P4W             | Air 359L/sec | <5ms          |
| .050.6.X.Y.Z | 50                           | 600 (-30%+15%)         | 3P3W ; 3P4W             | Air 359L/sec | <5ms          |
| .075.5.X.Y.Z | 75                           | 480 (-20%+15%)         | 3P3W ; 3P4W             | Air 359L/sec | <5ms          |
| .075.6.X.Y.Z | 75                           | 600 (-30%+15%)         | 3P3W ; 3P4W             | Air 359L/sec | <5ms          |
| .090.6.X.Y.Z | 90                           | 600 (-30%+15%)         | 3P3W ; 3P4W             | Air 359L/sec | <5ms          |
| .100.4.X.Y.Z | 100                          | 400 (-40%+15%)         | 3P3W ; 3P4W             | Air 300L/sec | <5ms          |

X = power grid structure Y = mounting type Z = HMI display


#### **MECHANICAL DIMENSIONS mm**


| FINEWO        |     |     |     | Ra  | ack mou | nted |     |      |     |     |     | Wa | ll mount | ed  |     |     | Weight |
|---------------|-----|-----|-----|-----|---------|------|-----|------|-----|-----|-----|----|----------|-----|-----|-----|--------|
| FINSVG        | A   | В   | C   | F   | G       | l    | L   | N    | Ţ   | H   | J   | E  | Р        | Q   | М   | R   | Kg.    |
| .030.4.X.Y.Z  | 540 | 190 | 555 | 510 | 540     | 524  | 105 | 42.5 | 500 | 560 | 536 | 10 | 360      | 500 | 191 | 510 | 30     |
| .040.5.X.Y.Z  | 544 | 250 | 655 | 590 | 640     | 526  | 140 | 55   | 520 | 665 | 638 | 10 | 400      | 505 | 253 | 590 | 35     |
| .050.4.X.Y.Z  | 540 | 190 | 555 | 510 | 540     | 524  | 105 | 42.5 | 500 | 560 | 536 | 10 | 360      | 500 | 191 | 510 | 48     |
| .063.5.X.Y.Z  | 544 | 250 | 655 | 590 | 640     | 526  | 140 | 55   | 520 | 665 | 638 | 10 | 400      | 505 | 253 | 590 | 48     |
| .050.6.X.Y.Z  | 544 | 250 | 655 | 590 | 640     | 526  | 140 | 55   | 520 | 665 | 638 | 10 | 400      | 505 | 253 | 590 | 50     |
| .075.5.X.Y.Z  | 544 | 250 | 655 | 590 | 640     | 526  | 140 | 55   | 520 | 665 | 638 | 10 | 400      | 505 | 253 | 590 | 55     |
| .075.6.X.Y.Z  | 544 | 250 | 655 | 590 | 640     | 526  | 140 | 55   | 520 | 665 | 638 | 10 | 400      | 505 | 253 | 590 | 66     |
| .090.6.X.Y.Z  | 544 | 250 | 655 | 590 | 640     | 526  | 140 | 55   | 520 | 665 | 638 | 10 | 400      | 505 | 253 | 590 | 67     |
| .100.4.3F.Y.Z | 540 | 269 | 550 | 470 | 520     | 521  | 180 | 44.5 | 500 | 557 | 530 | 10 | 400      | 505 | 286 | 478 | 67     |
| .100.4.4F.Y.Z | 540 | 269 | 550 | 470 | 520     | 521  | 180 | 44.5 | 500 | 553 | 518 | 10 | 400      | 505 | 271 | 520 | 67     |

#### **RACK MOUNTED**

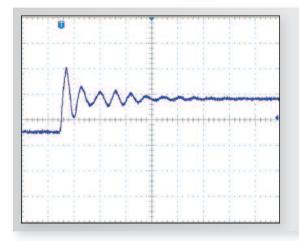


#### WALL MOUNTED










#### Introduction

Motors controlled by VFDs or servo drives require additional attention to avoid overvoltage spikes, known as dV/dt. Voltage wave reflection is a function of the voltage rise time (dV/dt) and the length of the motor cables. This phenomenon creates additional overvoltage spikes which cause premature degradation and failure to the motor insulation.

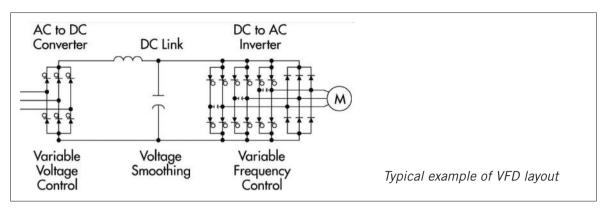
The challenge for OEMs, system integrators and distributors is to ensure that the installed motors are well protected from overvoltage. Markets using VFDs have adopted a special motor, better known as, a motor rated VFD or inverter duty motor. The motor rated VFD construction can change significantly based on the manufacturer. However following the National Electrical Manufacturer's Association (NEMA), the greatest difference between a standard motor and an inverter duty motor is the winding insulation.

For example, a nominal 480 Vac AC drive using a standard grade motor should maintain performance and function with peak voltage up to 1000V. For inverter duty rated motors the acceptable peak voltage is typically 1500V.



*Typical example of dV/dt measured on the motor with cable length of 50m (150 ft)* 

#### Theory


To better understand what causes motor failure and unforeseen challenges, it is best to first understand how a VFD is assembled. VFDs are made up of three major parts:

- The rectifier takes incoming AC power and converts it to DC power
- The DC link several capacitors used for energy storage from the output of the rectifier
- The inverter produces 2-20 kHz signal used to generate the output waveform to the motor using pulse width modulation (PWM)

PWM is a technique which generates the width of a pulse based on modulation signal information. Due to this technique, the dV/dt presents a significant concern.

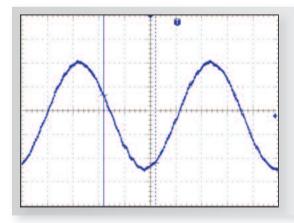






#### **The Solution**

Enerdoor has developed the motor protection series to protect motors from harmful overvoltage and dV/dt spikes generated by the drive's output.


This is particularly useful for applications with variable frequency drives and servo drives. Enerdoor solutions include: common mode and differential mode chokes, sine wave filters and snubbers; all of which are designed to work with various carrier frequencies, output frequencies and applications.

#### **Specific Solutions**

**Sine Wave Filters:** This series reduces the effect of the PWM by converting the drive's output to a true sine waveform, eliminating dV/dt.

The **FIN915SF** model is used with fundamental frequencies up to 25kHz.

The high frequency inductance **FIN960F** is a unique solution used for synchronous motor spindle applications with output frequencies ranging from 1 Hz to 10 kHz.



*Typical example of a waveform between the VFD and motor using an Enerdoor sine wave filter FIN915SFH* 



**Snubber:** Enerdoor snubber **FIN47SNB** is a unique solution to reduce common mode and differential mode noise. The snubber is used in parallel to the system and is an ideal solution for clients in need of improving the reliability of winding insulation and bearings.

|  | U          |                         |
|--|------------|-------------------------|
|  |            | Mar                     |
|  | Laurentyna | 1                       |
|  |            |                         |
|  |            |                         |
|  |            | Waveform Intensity: 959 |

Typical measurement of dV/dt on the motor side of VFD with cable length of 100m (300ft)

|   |            |        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                      |             | 1          |
|---|------------|--------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|----------------------|-------------|------------|
|   |            |        | -        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |                      |             |            |
|   |            |        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                      |             |            |
|   |            |        |          | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |                      |             |            |
|   |            |        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                      |             |            |
|   |            |        | : :      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                      |             |            |
|   |            | 1-1    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                      |             |            |
|   |            | 1 minu | <br>     | - And Annual Control of the Annual Control o | - | on Succession of the | and the for | A A CANADA |
|   |            | 1      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                      |             |            |
| - | which is a |        | <br>1    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 | ++++                 |             | 1111       |
|   |            |        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                      |             |            |
|   |            |        | 1        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                      |             |            |
|   |            |        | 1.01.0   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |                      |             |            |
|   |            |        |          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |                      |             |            |
|   |            |        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                      |             |            |
|   |            |        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                      |             |            |
|   |            |        |          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |                      |             |            |
|   |            |        | -        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |                      |             |            |
|   |            |        |          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |                      |             |            |
| 1 | 1.1.1.1    |        | <br>Land |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                      |             | 1          |

Typical measurement of dV/dt on the motor side of VFD with cable length of 100m (300ft) with Enerdoor snubber FIN47SNB installed





|                                                  |                         |                   |         |        | CONNE           | CTOR   | S       |                         | FI                            | EATUR                        | ES                     |              |                              | APP         | LICAT                        | IONS                          |                               |                 |
|--------------------------------------------------|-------------------------|-------------------|---------|--------|-----------------|--------|---------|-------------------------|-------------------------------|------------------------------|------------------------|--------------|------------------------------|-------------|------------------------------|-------------------------------|-------------------------------|-----------------|
| Filter<br>Selection<br>Guide<br>Motor Protection | Description             | Current Range (A) | Voltage | Cables | Terminal Blocks | Screws | Bus Bar | Common Mode Attenuation | Differential Mode Attenuation | Very Long Cable Applications | Output Frequency >75Hz | Compact Case | Long Cable Application >300m | CNC Machine | High Frequency Spindle Motor | Motor Controlled by VFD <100m | Closed Loop Motor Application | Approval        |
| FIN900                                           | 3-phase                 | 10-280            | 0-600   | ×      | ×               | ×      |         | ×                       |                               |                              |                        | ×            |                              | ×           |                              | ×                             |                               |                 |
| FIN930                                           | 3-phase                 | 6-200             | 0-600   |        | ×               |        |         | ×                       |                               |                              |                        |              |                              |             |                              |                               | ×                             |                 |
| FIN950U                                          | 3-phase                 | 8-300             | 0-600   |        | ×               |        | ×       |                         | ×                             |                              |                        |              |                              |             |                              | ×                             |                               |                 |
| FIN5955                                          | 3-phase                 | 3-20              | 0-600   |        | ×               |        |         |                         | ×                             |                              |                        | ×            |                              | ×           |                              | ×                             |                               | c <b>FL</b> us  |
| FIN5958                                          | 3-phase                 | 12-110            | 0-600   |        | ×               |        |         |                         | ×                             |                              | ×                      | ×            | ×                            | ×           | ×                            |                               | ×                             |                 |
| FIN5980P                                         | 3-phase                 | 9-22              | 0-480   | ×      | ×               |        |         |                         |                               |                              |                        |              |                              | ×           |                              |                               |                               | c <b>FLL</b> us |
| FIN5983                                          | 3-phase                 | 12-60             | 0-600   |        | ×               |        |         |                         |                               |                              |                        |              | ×                            | ×           |                              |                               | ×                             | c <b>RL</b> us  |
| FIN960F                                          | 3-phase                 | 10-1000           | 0-750   |        | ×               |        |         |                         | ×                             |                              | ×                      |              |                              | ×           | ×                            |                               |                               |                 |
| FIN905SF                                         | 3-phase                 | 5-880             | 0-600   |        | ×               |        | ×       |                         | ×                             | ×                            |                        |              | ×                            |             |                              |                               |                               |                 |
| FIN915SFH                                        | 3-phase                 | 5-1100            | 0-600   |        | ×               |        |         |                         | ×                             | ×                            | ×                      |              |                              |             | ×                            |                               |                               |                 |
| FIN47SNB                                         | 3-phase<br>plus neutral | -                 | 0-600   |        | ×               |        |         |                         |                               | ×                            |                        | ×            | ×                            |             |                              | ×                             | ×                             |                 |
| FINSTP                                           | star point to groud     | -                 | 0-600   |        | ×               |        |         |                         |                               | ×                            | ×                      | ×            | ×                            |             |                              | ×                             | ×                             | c <b>RL</b> us  |





# **Motor Protection**

Enerdoor motor protection reduces harmful dV/dt generated by variable frequency drives imposed onto the motor. Motor protection devices are designed to work in various applications of switching frequencies and frequency outputs.

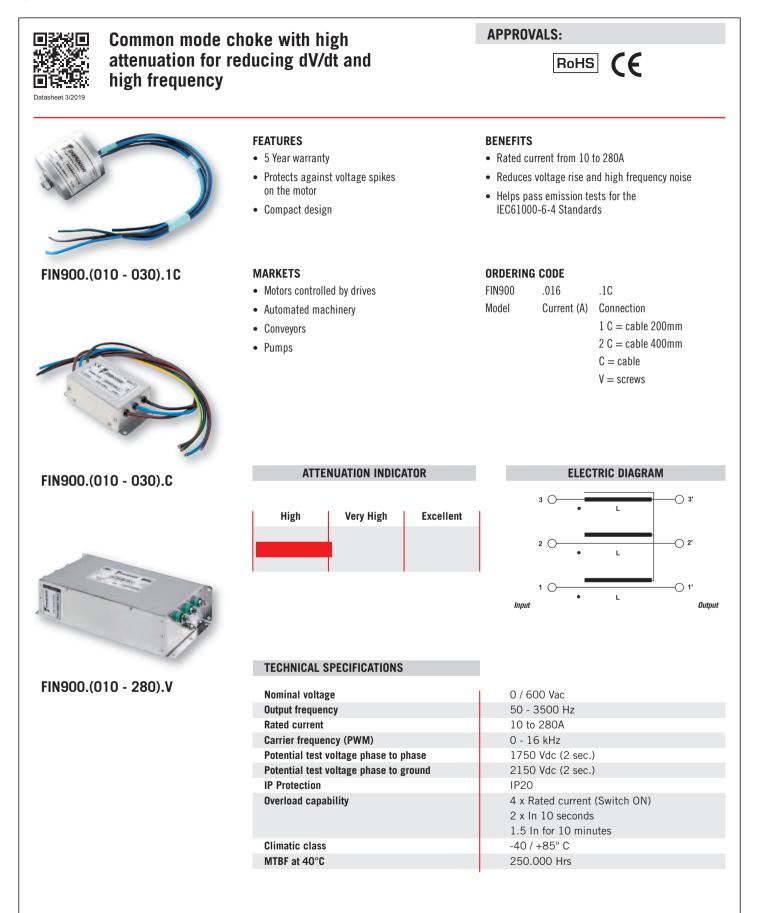
This series carries CE and UL approvals and offers a current range from 3 to 1100A. Enerdoor motor protection includes common mode and differential mode inductance, sine wave filters and snubbers.

Unique features include: high linearity vs frequency and current, very low operating temperatures, and compact dimensions.

The FIN960F high frequency inductance is a unique solution used for synchronous spindle motor applications. This line works with frequency output up to 2 kHz while allowing the motor to operate at a low temperature.

The FIN905SF and FIN915SFH sine wave filters reduce the PWM effect, convert the PWM to a sine wave and eliminate dV/dt. These lines work with applications in open or closed loop feedback.

The FIN905SF works with frequency output up to 70 Hz. The FIN915SFH line is used with fundamental frequencies up to 2 kHz while maintaining a very low application temperature.


## Motor protection applications include:

- Motors controlled by drives
- Pumps and conveyors
- Automated machinery
- Closed loop motor applications
- High speed motors
- CNC machinery
- Long cable applications 2,500m (8,200 ft)
- Process plants
- Water treatment plants
- Packaging machinery





Motor Protection



Engineered by

MOTOR PROTECTION



#### Motor Protection

#### **ELECTRICAL CHARACTERISTICS**

| FIN900  | Rated<br>Current<br>40°C | Rated<br>Current<br>50°C | Power Loss<br>(W) |
|---------|--------------------------|--------------------------|-------------------|
| .010.1C | 10                       | 9                        | 6                 |
| .016.10 | 16                       | 14                       | 6                 |
| .030.10 | 30                       | 26                       | 6                 |

| LI | NE     |   |
|----|--------|---|
| d  | Torque | ď |

CONNECTIONS

LIN

Torque (Nm)

\_

-

\_

d (mm)

\_

\_

\_

| d<br>(mm) | Torque<br>(Nm) | d1<br>(mm) | Torque<br>(Nm) |
|-----------|----------------|------------|----------------|
| -         | -              | M12        | 20             |
| -         | -              | M12        | 20             |
| -         | -              | M12        | 20             |

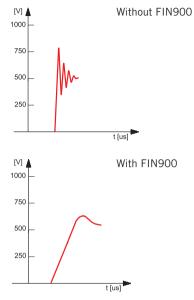
d1 (mm)

\_

\_

-

PE


Torque (Nm)

\_

\_

-

#### **TYPICAL MEASUREMENT**



Example of measurement in a typical application using a servo drive

| FIN900 | Rated<br>Current<br>40°C | Rated<br>Current<br>50°C | Power Loss<br>(W) |
|--------|--------------------------|--------------------------|-------------------|
| .010.C | 10                       | 9                        | 6                 |
| .016.C | 16                       | 14                       | 6                 |
| .030.C | 30                       | 26                       | 6                 |

Rated Current 40°C

10

16

30

50

80

100

150

200

280

**FIN900** 

.010.V

.016.V

.030.V

.050.V

.080.V

.100.V

.150.V

.200.V

.280.V

Rated Current 50°C

9

14

26

45

72

90

135

180

252

Power Loss (W)

6

10

15

23

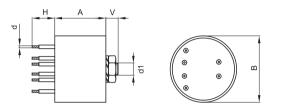
28

45 75

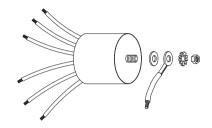
83

96

| L         | NE             |            | PE             |
|-----------|----------------|------------|----------------|
| d<br>(mm) | Torque<br>(Nm) | d1<br>(mm) | Torque<br>(Nm) |
| M4        | 1.2            | M4         | 1.2            |
| M5        | 4              | M4         | 1.2            |
| M5        | 4              | M4         | 1.2            |
| M6        | 6              | M5         | 4              |
| M6        | 6              | M5         | 4              |
| M8        | 14             | M8         | 14             |
| M8        | 14             | M8         | 14             |
| M10       | 18             | M10        | 18             |
| M12       | 18             | M10        | 18             |

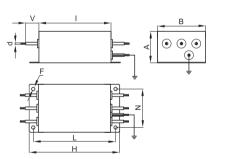




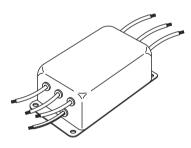


#### **MECHANICAL DIMENSIONS mm**

| FIN900 | D   | A  | В  | d | ۷  | d1  | H   | Weight<br>Kg. | Case |
|--------|-----|----|----|---|----|-----|-----|---------------|------|
| .010   | .1C | 60 | 65 | 2 | 12 | M12 | 200 | 0.5           | 1C   |
| .016.  | .1C | 60 | 65 | 2 | 12 | M12 | 200 | 0.5           | 1C   |
| .030   | .1C | 60 | 65 | 2 | 12 | M12 | 200 | 0.55          | 1C   |

#### CASE 1C




#### ASSEMBLY CONNECTION "1C"



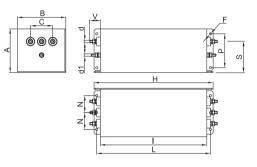

| FIN900 | A  | В  | d | ۷   | F   | H   | I. | L   | N  | Weight<br>Kg. | Case |
|--------|----|----|---|-----|-----|-----|----|-----|----|---------------|------|
| .010.C | 42 | 65 | 2 | 200 | 4.2 | 120 | 96 | 110 | 51 | 0.7           | С    |
| .016.C | 42 | 65 | 2 | 200 | 4.2 | 120 | 96 | 110 | 51 | 0.7           | С    |
| .030.C | 42 | 65 | 2 | 200 | 4.2 | 120 | 96 | 110 | 51 | 0.75          | С    |

CASE C

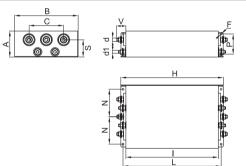


#### ASSEMBLY CONNECTION "C"

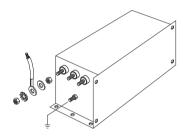




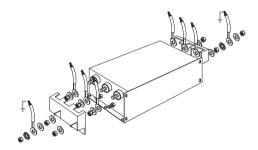




#### **MECHANICAL DIMENSIONS mm**

| FIN900 | A  | В   | C   | d   | d1  | V  | F   | H   | I   | L   | N    | Р  | S  | Weight<br>Kg. | Case |  |
|--------|----|-----|-----|-----|-----|----|-----|-----|-----|-----|------|----|----|---------------|------|--|
| .010.V | 58 | 86  | 44  | M4  | M4  | 14 | 4.5 | 186 | 160 | 176 | 30   | 40 | 38 | 2             | 1    |  |
| .016.V | 58 | 86  | 44  | M5  | M4  | 14 | 4.5 | 186 | 160 | 176 | 30   | 40 | 38 | 2             | 1    |  |
| .030.V | 58 | 86  | 44  | M5  | M4  | 14 | 4.5 | 186 | 160 | 176 | 30   | 40 | 38 | 2             | 1    |  |
| .050.V | 58 | 86  | 44  | M6  | M5  | 14 | 4.5 | 186 | 160 | 176 | 30   | 40 | 38 | 2             | 1    |  |
| .080.V | 90 | 100 | 46  | M6  | M5  | 28 | 4.5 | 246 | 220 | 235 | 35   | 70 | 64 | 3             | 2    |  |
| .100.V | 90 | 185 | 84  | M8  | M8  | 25 | 6.5 | 356 | 320 | 340 | 77.5 | 70 | 69 | 5             | 3    |  |
| .150.V | 90 | 220 | 120 | M8  | M8  | 29 | 6.5 | 356 | 320 | 340 | 95   | 70 | 60 | 7             | 4    |  |
| .200.V | 90 | 220 | 120 | M10 | M10 | 29 | 6.5 | 356 | 320 | 340 | 95   | 70 | 60 | 7.5           | 4    |  |
| .280.V | 90 | 220 | 120 | M12 | M10 | 29 | 6.5 | 356 | 320 | 340 | 95   | 70 | 60 | 8             | 4    |  |

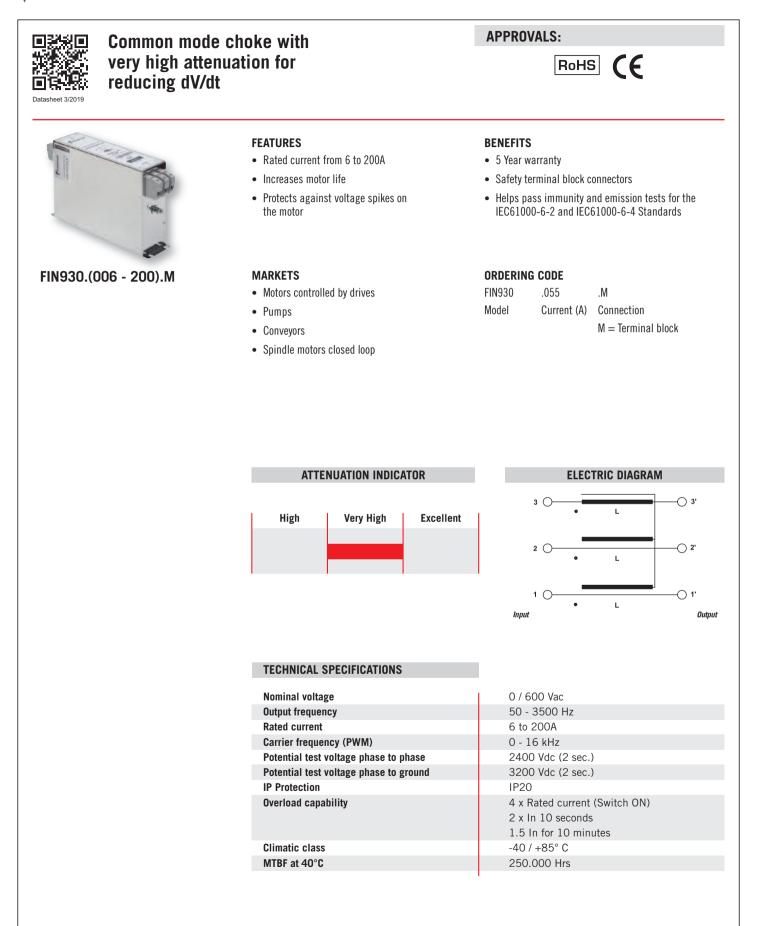

#### CASE 1, 2




#### CASE 3, 4



#### ASSEMBLY CONNECTION "V"




#### ASSEMBLY CONNECTION "V"





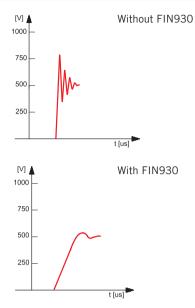




Engineered by FINMOTOR



CONNECTIONS

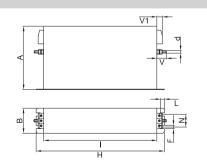

#### Motor Protection

#### **ELECTRICAL CHARACTERISTICS**

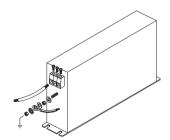
| FIN930 | Rated<br>Current<br>40°C | Rated<br>Current<br>50°C | Power Loss<br>(W) |
|--------|--------------------------|--------------------------|-------------------|
| .006.M | 8                        | 6                        | 3                 |
| .012.M | 14                       | 12                       | 3                 |
| .016.M | 18                       | 16                       | 4                 |
| .025.M | 28                       | 25                       | 4                 |
| .032.M | 35                       | 32                       | 5                 |
| .042.M | 50                       | 42                       | 7                 |
| .055.M | 63                       | 55                       | 8                 |
| .070.M | 80                       | 70                       | 13                |
| .080.M | 90                       | 80                       | 13                |
| .100.M | 110                      | 100                      | 15                |
| .115.M | 130                      | 115                      | 22                |
| .150.M | 175                      | 150                      | 25                |
| .200.M | 230                      | 200                      | 28                |

|                         | LINE                                    |                            | PE        |                |  |  |  |
|-------------------------|-----------------------------------------|----------------------------|-----------|----------------|--|--|--|
| Solid<br>Cable<br>(mm²) | Stranded<br>Cable<br>(mm <sup>2</sup> ) | Terminal<br>Torque<br>(Nm) | d<br>(mm) | Torque<br>(Nm) |  |  |  |
| 0.2 - 10                | 0.2 - 6                                 | 1.2                        | M6        | 1.2            |  |  |  |
| 0.2 - 10                | 0.2 - 6                                 | 1.2                        | M6        | 1.2            |  |  |  |
| 0.2 - 10                | 0.2 - 6                                 | 1.2                        | M6        | 1.2            |  |  |  |
| 0.2 - 10                | 0.2 - 6                                 | 1.2                        | M6        | 1.2            |  |  |  |
| 0.2 - 10                | 0.2 - 6                                 | 1.2                        | M6        | 1.2            |  |  |  |
| 0.5 - 16                | 0.5 - 10                                | 1.8                        | M6        | 1.8            |  |  |  |
| 0.5 - 16                | 0.5 - 10                                | 1.8                        | M6        | 1.8            |  |  |  |
| 4 - 25                  | 6 - 35                                  | 4.5                        | M10       | 4.5            |  |  |  |
| 4 - 25                  | 6 - 35                                  | 4.5                        | M10       | 4.5            |  |  |  |
| 10 - 50                 | 10 - 50                                 | 4                          | M10       | 4              |  |  |  |
| 10 - 50                 | 10 - 50                                 | 4                          | M10       | 4              |  |  |  |
| 35 - 95                 | 35 - 95                                 | 20                         | M10       | 20             |  |  |  |
| 35 - 95                 | 35 - 95                                 | 20                         | M10       | 20             |  |  |  |

#### **TYPICAL MEASUREMENT**

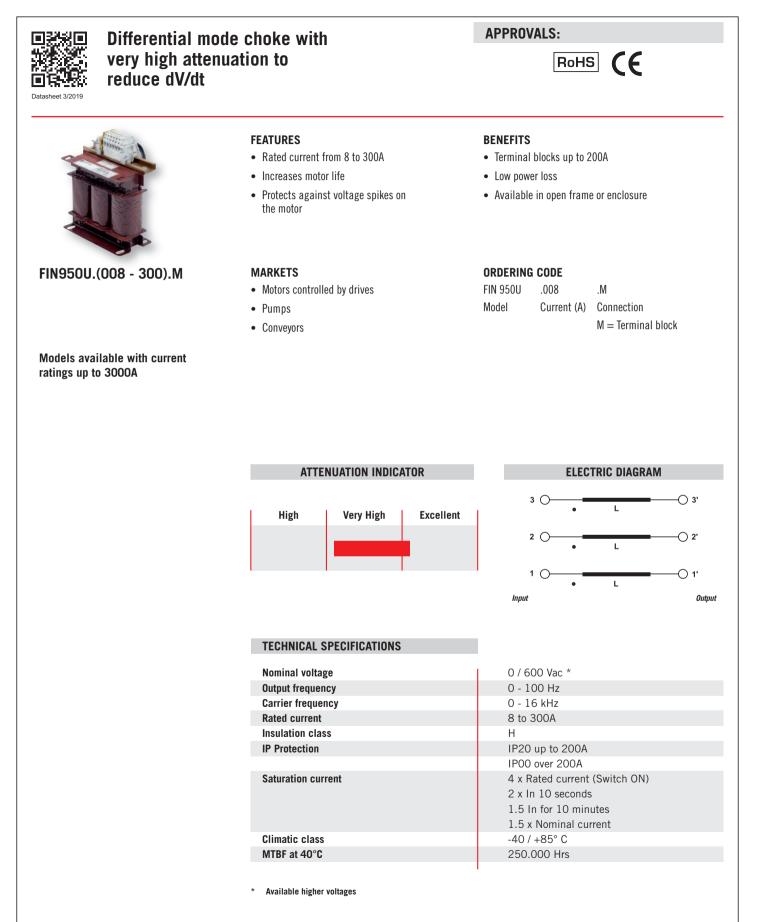



Example of measurement in a typical application using a servo drive


#### **MECHANICAL DIMENSIONS mm**

| FIN930 | A   | В   | ۷  | V1 | F | H   | I.  | L  | N  | d   | Weight<br>Kg. | Case |
|--------|-----|-----|----|----|---|-----|-----|----|----|-----|---------------|------|
| .006.M | 140 | 50  | 19 | 15 | 6 | 226 | 200 | 7  | 28 | M6  | 1.7           | 1    |
| .012.M | 140 | 50  | 19 | 15 | 6 | 226 | 200 | 7  | 28 | M6  | 1.7           | 1    |
| .016.M | 177 | 60  | 19 | 15 | 6 | 267 | 237 | 8  | 34 | M6  | 1.7           | 1    |
| .025.M | 177 | 60  | 19 | 15 | 6 | 267 | 237 | 8  | 34 | M6  | 2.3           | 1    |
| .032.M | 177 | 60  | 19 | 15 | 6 | 267 | 237 | 8  | 34 | M6  | 2.3           | 1    |
| .042.M | 177 | 70  | 19 | 25 | 6 | 295 | 265 | 8  | 44 | M6  | 3.4           | 1    |
| .055.M | 177 | 70  | 19 | 33 | 6 | 295 | 265 | 8  | 44 | M6  | 3.5           | 1    |
| .070.M | 205 | 80  | 28 | 38 | 8 | 390 | 340 | 12 | 53 | M10 | 6             | 1    |
| .080.M | 205 | 80  | 28 | 38 | 8 | 390 | 340 | 12 | 53 | M10 | 6             | 1    |
| .100.M | 205 | 80  | 28 | 43 | 8 | 390 | 340 | 12 | 53 | M10 | 7.1           | 1    |
| .115.M | 205 | 80  | 28 | 43 | 8 | 390 | 340 | 12 | 53 | M10 | 7.1           | 1    |
| .150.M | 220 | 105 | 28 | 50 | 8 | 420 | 370 | 12 | 78 | M10 | 8.5           | 1    |
| .200.M | 220 | 105 | 28 | 50 | 8 | 420 | 370 | 12 | 78 | M10 | 8.5           | 1    |

CASE 1




#### ASSEMBLY CONNECTION "M"







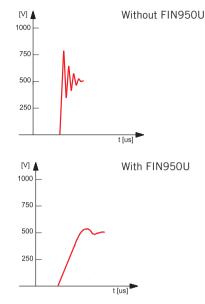






### **FIN950U**

#### Motor Protection


#### **ELECTRICAL CHARACTERISTICS**

| FIN950U    | Rated<br>Current<br>40°C | Rated<br>Current<br>50°C | Power Loss<br>(W) |
|------------|--------------------------|--------------------------|-------------------|
| .008.M20   | 8                        | 6                        | 23                |
| .012.M12   | 12                       | 10                       | 30                |
| 024.M070   | 24                       | 21                       | 36                |
| .050.M038  | 50                       | 45                       | 61                |
| .090.M019  | 90                       | 81                       | 73                |
| .150.M013  | 150                      | 135                      | 120               |
| .200.M0080 | 200                      | 180                      | 150               |
| .300.M0053 | 300                      | 260                      | 225               |

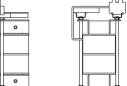
#### CONNECTIONS

|                                      | LINE                                    |                               | PE             |
|--------------------------------------|-----------------------------------------|-------------------------------|----------------|
| Solid<br>Cable<br>(mm <sup>2</sup> ) | Stranded<br>Cable<br>(mm <sup>2</sup> ) | Terminal Block<br>Torque (Nm) | Torque<br>(Nm) |
| 0.2 - 10                             | 0.2 - 6                                 | 1.2                           | 1.2            |
| 0.2 - 10                             | 0.2 - 6                                 | 1.2                           | 1.2            |
| 0.2 - 10                             | 0.2 - 6                                 | 1.2                           | 1.2            |
| 0.5 - 10                             | 0.5 - 10                                | 1.8                           | 1.8            |
| 10 - 50                              | 10 - 50                                 | 4.0                           | 4.0            |
| 10 - 50                              | 10 - 50                                 | 4.0                           | 4.0            |
| 35 - 95                              | 35 - 95                                 | 20                            | 20             |
| 70 - 240                             | 70 - 240                                | 30                            | 30             |

#### **TYPICAL MEASUREMENT**

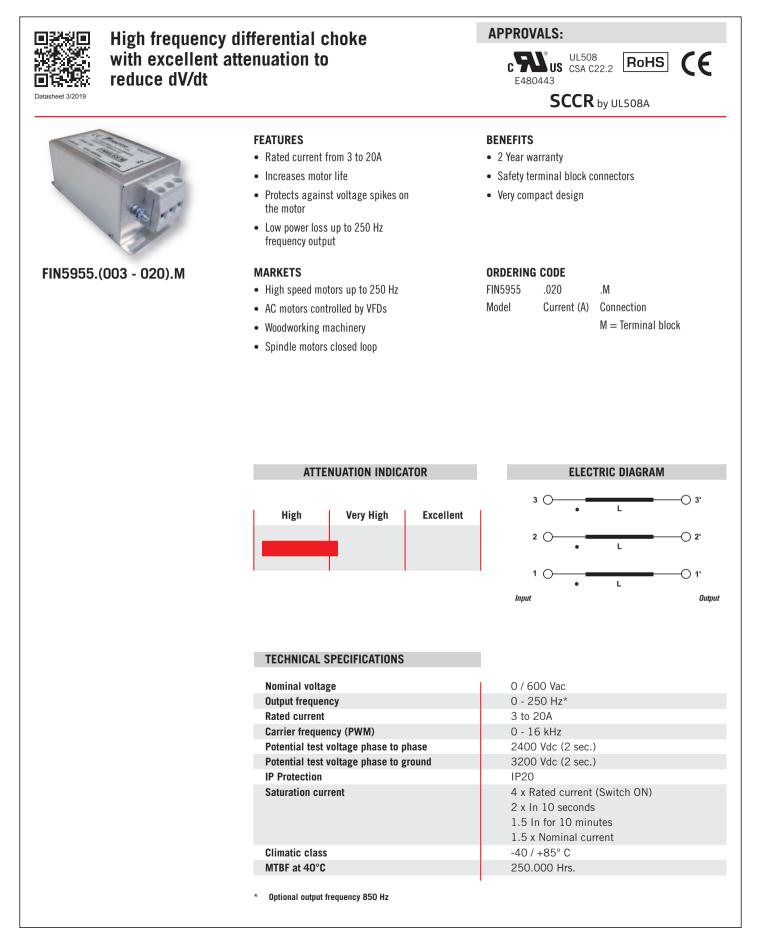


Example of measurement in a typical application using a servo drive


#### **MECHANICAL DIMENSIONS mm**

| FIN950U    | A   | В   | C   | D   | F  | H   | Weight<br>Kg. | Case |
|------------|-----|-----|-----|-----|----|-----|---------------|------|
| .008.M20   | 150 | 125 | 100 | 55  | 7  | 250 | 2             | 1    |
| .012.M12   | 150 | 125 | 100 | 55  | 7  | 250 | 3             | 1    |
| 024.M070   | 150 | 125 | 100 | 55  | 7  | 250 | 4             | 1    |
| .050.M038  | 180 | 150 | 110 | 90  | 7  | 280 | 5             | 1    |
| .090.M019  | 180 | 150 | 110 | 90  | 7  | 280 | 18            | 1    |
| .150.M013  | 240 | 200 | 190 | 95  | 10 | 310 | 20            | 1    |
| .200.M0080 | 240 | 200 | 190 | 95  | 10 | 310 | 26            | 1    |
| .300.M0053 | 300 | 260 | 170 | 110 | 10 | 310 | 40            | 1    |

#### CASE 1




0 0





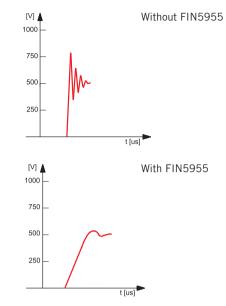








CONNECTIONS

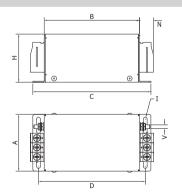

#### Motor Protection

#### **ELECTRICAL CHARACTERISTICS**

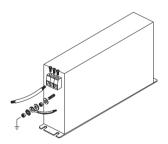
| FIN5955 | Rated<br>Current<br>40°C | Rated<br>Current<br>50°C | Power Loss<br>(W) |
|---------|--------------------------|--------------------------|-------------------|
| .003.M  | 3                        | 2                        | 2.2               |
| .006.M  | 6                        | 5                        | 2.4               |
| .010.M  | 10                       | 8                        | 2.7               |
| .020.M  | 20                       | 17                       | 3                 |

|   |                         | LINE                                    | PE                         |           |                |  |  |
|---|-------------------------|-----------------------------------------|----------------------------|-----------|----------------|--|--|
| S | Solid<br>Cable<br>(mm²) | Stranded<br>Cable<br>(mm <sup>2</sup> ) | Terminal<br>Torque<br>(Nm) | V<br>(mm) | Torque<br>(Nm) |  |  |
|   | 0.2 - 10                | 0.2 - 6                                 | 1.2                        | M4        | 1.2            |  |  |
|   | 0.2 - 10                | 0.2 - 6                                 | 1.2                        | M4        | 1.2            |  |  |
|   | 0.2 - 10                | 0.2 - 6                                 | 1.2                        | M4        | 1.2            |  |  |
|   | 0.2 - 10                | 0.2 - 6                                 | 1.2                        | M4        | 1.2            |  |  |

#### TYPICAL MEASUREMENT



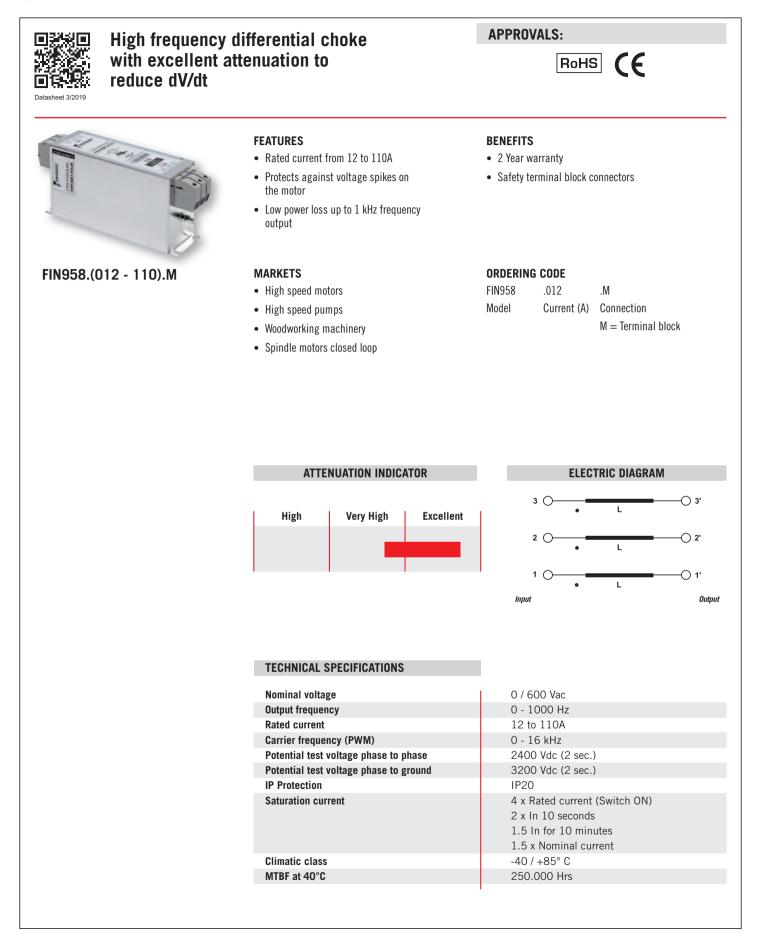

Example of measurement in a typical application using a servo drive


#### **MECHANICAL DIMENSIONS mm**

| FIN5955 | A  | В   | C   | D   | H  | N  | I.   | ۷  | Weight<br>Kg. | Case |
|---------|----|-----|-----|-----|----|----|------|----|---------------|------|
| .003.M  | 60 | 101 | 125 | 113 | 51 | 11 | 4x17 | M4 | 0.40          | 1    |
| .006.M  | 60 | 101 | 125 | 113 | 51 | 11 | 4x17 | M4 | 0.40          | 1    |
| .010.M  | 60 | 101 | 125 | 113 | 51 | 11 | 4x17 | M4 | 0.45          | 1    |
| .020.M  | 60 | 101 | 125 | 113 | 51 | 11 | 4x17 | M4 | 0.45          | 1    |

CASE 1




#### ASSEMBLY CONNECTION "M"





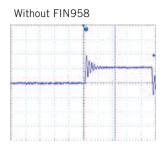


Motor Protection








#### **ELECTRICAL CHARACTERISTICS**

| FIN958 | Rated<br>Current<br>40°C | Rated<br>Current<br>50°C | Power Loss<br>(W) |
|--------|--------------------------|--------------------------|-------------------|
| .012.M | 12                       | 10                       | 3.4               |
| .020.M | 20                       | 18                       | 4.4               |
| .025.M | 25                       | 23                       | 4.8               |
| .032.M | 32                       | 28                       | 5.3               |
| .042.M | 42                       | 38                       | 7                 |
| .060.M | 60                       | 54                       | 11                |
| .075.M | 75                       | 67                       | 12                |
| .090.M | 90                       | 81                       | 12.7              |
| .110.M | 110                      | 100                      | 13                |

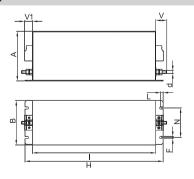
| CO | NNF | СТІ | ONS  |
|----|-----|-----|------|
| 00 |     | 011 | UIIJ |

|                         | LINE                                    |                            | F         | PE             |
|-------------------------|-----------------------------------------|----------------------------|-----------|----------------|
| Solid<br>Cable<br>(mm²) | Stranded<br>Cable<br>(mm <sup>2</sup> ) | Terminal<br>Torque<br>(Nm) | d<br>(mm) | Torque<br>(Nm) |
| 0.2 - 10                | 0.2 - 6                                 | 1.2                        | M6        | 1.2            |
| 0.2 - 10                | 0.2 - 6                                 | 1.2                        | M6        | 1.2            |
| 0.2 - 10                | 0.2 - 6                                 | 1.2                        | M6        | 1.2            |
| 0.2 - 10                | 0.2 - 6                                 | 1.2                        | M6        | 1.2            |
| 0.2 - 10                | 0.2 - 6                                 | 1.2                        | M6        | 1.2            |
| 6 - 35                  | 4 - 25                                  | 4.5                        | M6        | 6              |
| 6 - 35                  | 4 - 25                                  | 4.5                        | M6        | 6              |
| 10 - 50                 | 10 - 50                                 | 4.0                        | M10       | 6              |
| 35 - 95                 | 35 - 95                                 | 20.0                       | M10       | 6              |

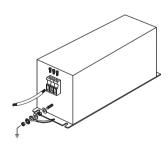
#### **TYPICAL MEASUREMENT**





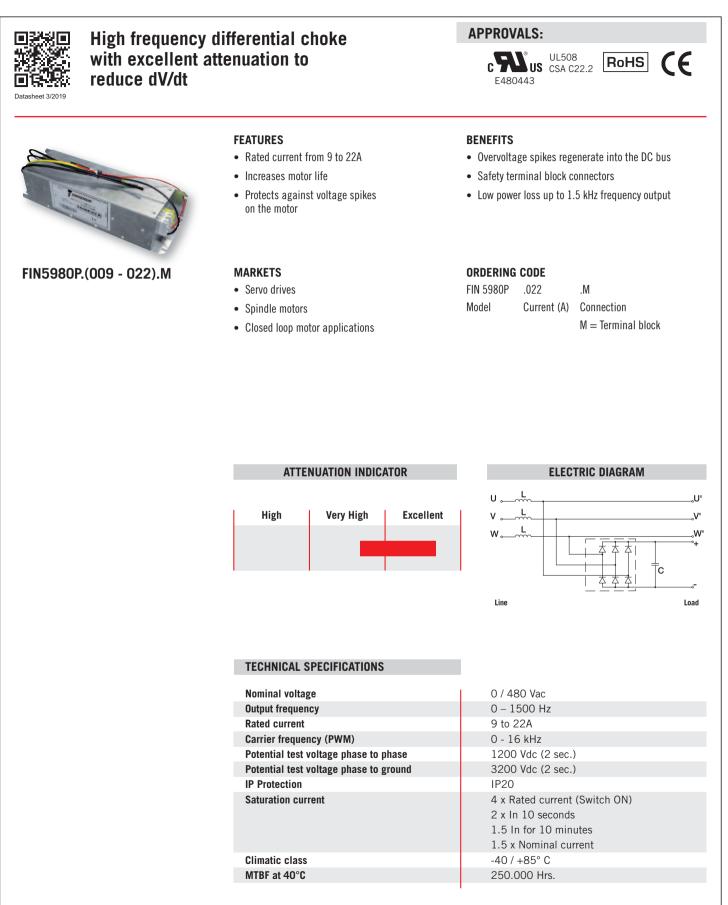

| Construction Construction of the second                                                                        |                          |
|----------------------------------------------------------------------------------------------------------------|--------------------------|
|                                                                                                                |                          |
|                                                                                                                |                          |
|                                                                                                                |                          |
|                                                                                                                |                          |
| h h                                                                                                            |                          |
|                                                                                                                |                          |
|                                                                                                                |                          |
| and a second | **************           |
|                                                                                                                |                          |
|                                                                                                                |                          |
|                                                                                                                |                          |
|                                                                                                                |                          |
|                                                                                                                |                          |
|                                                                                                                |                          |
|                                                                                                                | Waveform Intensity: 100% |

Example of measurement in a typical application using a servo drive


#### **MECHANICAL DIMENSIONS mm**

| FIN958 | A   | В   | ۷  | V1 | F   | H   | I   | L   | N   | d   | Weight<br>Kg. | Case |
|--------|-----|-----|----|----|-----|-----|-----|-----|-----|-----|---------------|------|
| .012.M | 100 | 90  | 22 | 16 | 5.4 | 250 | 220 | 7.5 | 60  | M6  | 1.9           | 1    |
| .020.M | 100 | 90  | 22 | 16 | 5.4 | 250 | 220 | 7.5 | 60  | M6  | 1.9           | 1    |
| .025.M | 100 | 90  | 22 | 16 | 5.4 | 250 | 220 | 7.5 | 60  | M6  | 1.9           | 1    |
| .032.M | 100 | 90  | 22 | 16 | 5.4 | 250 | 220 | 7.5 | 60  | M6  | 2.0           | 1    |
| .042.M | 100 | 90  | 22 | 35 | 5.4 | 250 | 220 | 7.5 | 60  | M6  | 2.5           | 2    |
| .060.M | 135 | 85  | 22 | 39 | 6.5 | 270 | 240 | 7.5 | 60  | M6  | 3.8           | 3    |
| .075.M | 135 | 85  | 22 | 39 | 6.5 | 270 | 240 | 7.5 | 60  | M6  | 4.5           | 3    |
| .090.M | 155 | 90  | 24 | 43 | 6.5 | 270 | 240 | 7.5 | 65  | M10 | 6.0           | 3    |
| .110.M | 170 | 125 | 26 | 51 | 6.5 | 380 | 350 | 7.5 | 102 | M10 | 8.5           | 4    |

### CASE 1, 2, 3, 4




#### ASSEMBLY CONNECTION "M"





### FIN5980P

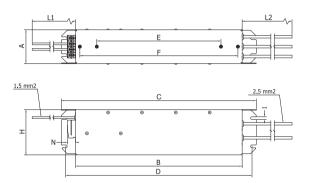




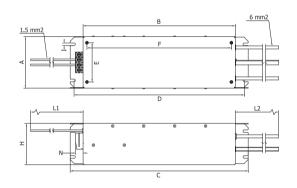


### FIN5980P

#### **ELECTRICAL CHARACTERISTICS**


| CO | NN   | FC | τιΛ | NS   |
|----|------|----|-----|------|
| 60 | ININ | LU | 110 | IN S |

|          |                          |                          |                                     |                         | LINE                       |                               | PE             |
|----------|--------------------------|--------------------------|-------------------------------------|-------------------------|----------------------------|-------------------------------|----------------|
| FIN5980P | Rated<br>Current<br>40°C | Rated<br>Current<br>50°C | Power Loss<br>at 50 Hz<br>(1000 Hz) | Solid<br>Cable<br>(mm²) | Stranded<br>Cable<br>(mm²) | Terminal Block<br>Torque (Nm) | Torque<br>(Nm) |
| .009.M   | 12                       | 10                       | 1.2 (2.7)                           | 0.5 - 16                | 0.5 - 10                   | 1.8                           | 1.8            |
| .022.M   | 30                       | 25                       | 1.8 (4.7)                           | 0.5 - 16                | 0.5 - 10                   | 1.8                           | 1.8            |


#### MECHANICAL DIMENSIONS mm

| FIN5980P | A   | В   | C   | D   | E   | F   | H   | I | L1  | L2  | N  | Weight<br>Kg. | Case |
|----------|-----|-----|-----|-----|-----|-----|-----|---|-----|-----|----|---------------|------|
| .009.M   | 60  | 295 | 345 | 330 | 220 | 280 | 60  | 5 | 300 | 300 | 11 | 2.2           | 1    |
| .022.M   | 100 | 295 | 345 | 330 | 76  | 280 | 100 | 5 | 300 | 300 | 11 | 3             | 2    |

#### CASE 1



#### CASE 2



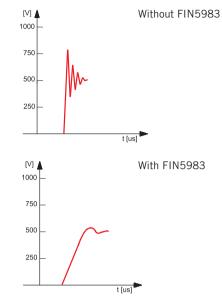








CONNECTIONS

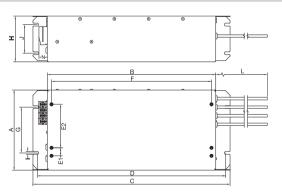

#### Motor Protection

#### ELECTRICAL CHARACTERISTICS

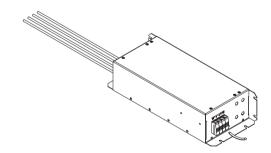
| FIN5983 | Rated<br>Current<br>40°C | Rated<br>Current<br>50°C | Power Loss<br>(W) |   |
|---------|--------------------------|--------------------------|-------------------|---|
| .012.M  | 12                       | 10                       | 1.2 (2.7)         | ( |
| .030.M  | 30                       | 25                       | 1.8 (4.7)         | ( |
| .040.M  | 45                       | 37                       | 3 (7)             | ( |
| .060.M  | 60                       | 50                       | 8 (16.8)          |   |

|    |                         | LINE                       |                            | PE             |
|----|-------------------------|----------------------------|----------------------------|----------------|
| SS | Solid<br>Cable<br>(mm²) | Stranded<br>Cable<br>(mm²) | Terminal<br>Torque<br>(Nm) | Torque<br>(Nm) |
| )  | 0.5 - 16                | 0.5 - 10                   | 1.8                        | 1.8            |
| )  | 0.5 - 16                | 0.5 - 10                   | 1.8                        | 1.8            |
|    | 0.5 - 16                | 0.5 - 10                   | 1.8                        | 1.8            |
| )  | 4 - 25                  | 6 - 35                     | 4.5                        | 4.5            |

#### **TYPICAL MEASUREMENT**

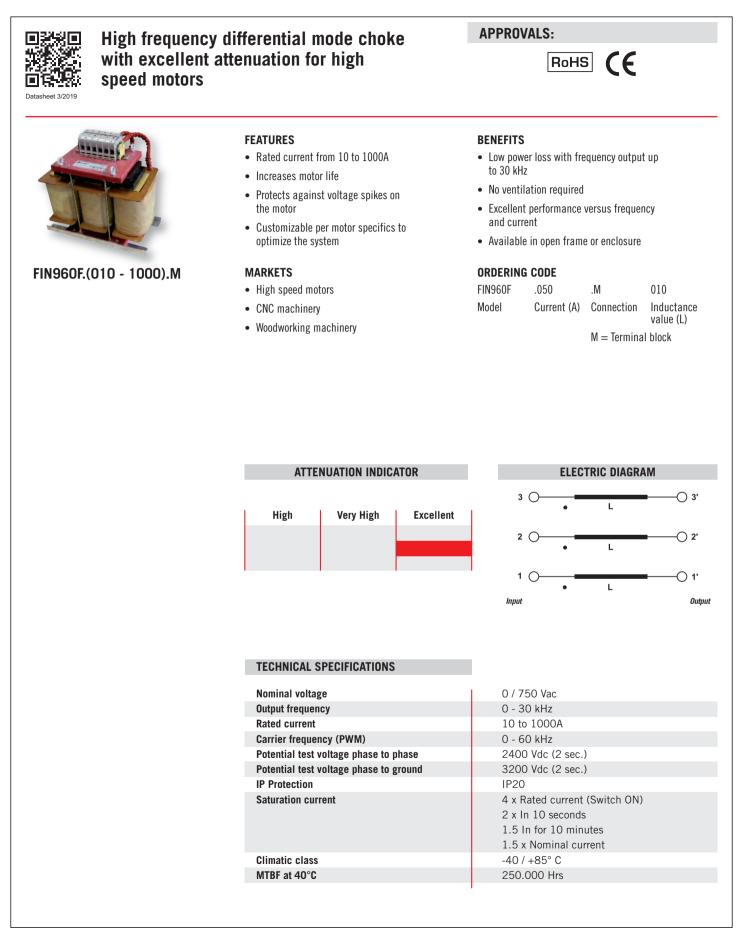



Example of measurement in a typical application using a servo drive


#### **MECHANICAL DIMENSIONS mm**

| FIN5983 | A   | В   | C   | D   | E1 | E2  | F   | G   | H  | J  | L   | I | N  | Weight<br>Kg. | Case |
|---------|-----|-----|-----|-----|----|-----|-----|-----|----|----|-----|---|----|---------------|------|
| .012.M  | 140 | 295 | 345 | 330 | 14 | 76  | 280 | 80  | 80 | 50 | 300 | 5 | 33 | 2.2           | 1    |
| .030.M  | 140 | 295 | 345 | 330 | 14 | 76  | 280 | 80  | 80 | 50 | 300 | 5 | 33 | 2.5           | 1    |
| .040.M  | 200 | 295 | 345 | 330 | -  | 160 | 280 | 120 | 80 | 50 | 300 | 5 | 38 | 3.2           | 1    |
| .060.M  | 200 | 295 | 345 | 330 | -  | 160 | 280 | 120 | 80 | 50 | 300 | 5 | 38 | 4             | 1    |

CASE 1




#### ASSEMBLY CONNECTION "M"





### FIN960F





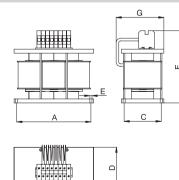


### FIN960F

#### **ELECTRICAL CHARACTERISTICS**

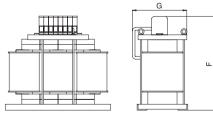
#### CONNECTIONS

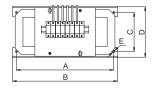
| FIN960F Rated<br>Current<br>(S1) | Peak<br>Current<br>(S6) | Power Loss | Solid                       | Chrondod                                |                               |                |
|----------------------------------|-------------------------|------------|-----------------------------|-----------------------------------------|-------------------------------|----------------|
|                                  |                         | (W)        | Cable<br>(mm <sup>2</sup> ) | Stranded<br>Cable<br>(mm <sup>2</sup> ) | Terminal Block<br>Torque (Nm) | Torque<br>(Nm) |
| .050.M010 50                     | 75                      | 70         | 2.5 - 50                    | 2.5 - 35                                | 5                             | 5              |
| .110.M010 110                    | 150                     | 110        | 10 - 70                     | 10 - 50                                 | 6                             | 6              |
| .160.M010 160                    | 200                     | 150        | 10 - 95                     | 10 - 50                                 | 10                            | 10             |
| .095.M020 95                     | 130                     | 90         | 10 - 70                     | 10 - 50                                 | 6                             | 6              |
| .130.M025 130                    | 160                     | 115        | 10 - 95                     | 10 - 70                                 | 10                            | 10             |
| .160.M025 160                    | 180                     | 170        | 10 - 95                     | 10 - 70                                 | 10                            | 10             |
| .090.M030 90                     | 120                     | 60         | 10 - 70                     | 10 - 50                                 | 6                             | 6              |
| .050.M040 50                     | 75                      | 80         | 2.5 - 50                    | 2.5 - 35                                | 5                             | 5              |
| .110.M040 110                    | 150                     | 280        | 10 - 70                     | 10 - 50                                 | 6                             | 6              |
| <b>.200.M040</b> 200             | 240                     | 580        | 16 - 150                    | 16 - 95                                 | 20                            | 20             |
| .085.M060 85                     | 120                     | 280        | 10 - 70                     | 10 - 50                                 | 6                             | 6              |
| .135.M060 135                    | 165                     | 300        | 10 - 95                     | 10 - 70                                 | 10                            | 10             |
| .170.M060 170                    | 205                     | 520        | 10 - 95                     | 10 - 70                                 | 10                            | 10             |
| .120.M100 120                    | 145                     | 305        | 10 - 70                     | 10 - 50                                 | 6                             | 6              |
| .200.M100 200                    | 240                     | 820        | 16 - 250                    | 16 - 95                                 | 20                            | 20             |


Custom nominal current and inductance value combinations are available to accommodate specific motor characteristics and working cycles.

S1 (100%) at 40C° - S6 (40% 2 min) at 40C°

#### **MECHANICAL DIMENSIONS mm**


| FIN960F   | A   | В   | C   | D   | E  | F   | G   | Weight<br>Kg. | Case |
|-----------|-----|-----|-----|-----|----|-----|-----|---------------|------|
| .050.M010 | 230 | 250 | 80  | 100 | 7  | 270 | 120 | 6             | 1    |
| .110.M010 | 240 | 260 | 110 | 140 | 7  | 270 | 150 | 18            | 2    |
| .160.M010 | 370 | 400 | 170 | 230 | 12 | 350 | 250 | 37            | 3    |
| .095.M020 | 240 | 260 | 110 | 140 | 7  | 270 | 150 | 20            | 2    |
| .160.M025 | 500 | 540 | 200 | 260 | 12 | 500 | 300 | 75            | 5    |
| .130.M030 | 500 | 540 | 200 | 260 | 12 | 500 | 300 | 65            | 5    |
| .050.M040 | 280 | 300 | 140 | 160 | 8  | 280 | 180 | 19            | 6    |
| .110.M040 | 500 | 540 | 200 | 260 | 12 | 500 | 300 | 65            | 5    |
| .200.M040 | 500 | 540 | 200 | 260 | 12 | 500 | 300 | 120           | 5    |
| .085.M060 | 500 | 540 | 200 | 260 | 12 | 500 | 300 | 65            | 5    |
| .135.M060 | 500 | 540 | 200 | 260 | 12 | 500 | 300 | 88            | 5    |
| .170.M060 | 500 | 540 | 200 | 260 | 12 | 500 | 300 | 105           | 5    |
| .120.M100 | 500 | 540 | 200 | 260 | 12 | 500 | 300 | 95            | 5    |
| .200.M100 | 660 | 700 | 320 | 390 | 12 | 600 | 410 | 200           | 7    |

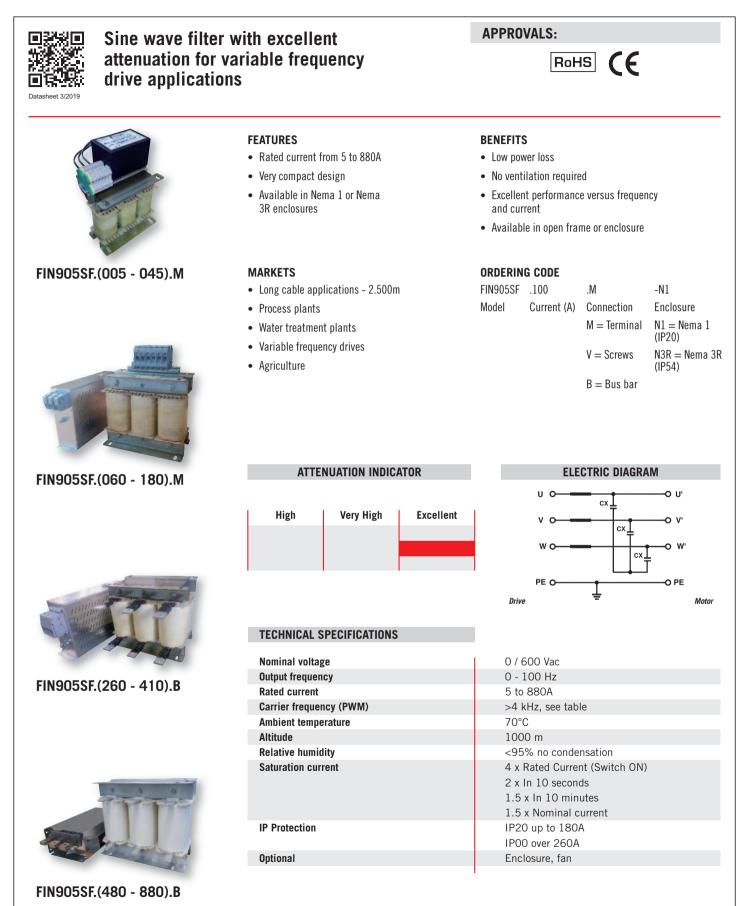

#### CASE 1, 2, 6



В








Engineered by



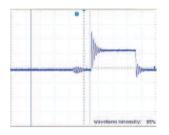
### FIN905SF

Motor Protection

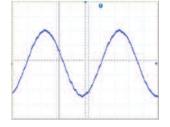




### FIN905SF


#### **ELECTRICAL CHARACTERISTICS**

| FIN905SF | Rated<br>Current<br>40°C | Rated<br>Current<br>50°C | Min.<br>Switch Freq.<br>(kHz) | Power<br>Loss<br>(W) |
|----------|--------------------------|--------------------------|-------------------------------|----------------------|
| .005.M   | 5                        | 4                        | 4                             | 67                   |
| .008.M   | 8                        | 7                        | 4                             | 79                   |
| .010.M   | 10                       | 8                        | 4                             | 88                   |
| .016.M   | 16                       | 14                       | 4                             | 116                  |
| .025.M   | 25                       | 21                       | 4                             | 151                  |
| .036.M   | 36                       | 30                       | 4                             | 175                  |
| .048.M   | 48                       | 39                       | 4                             | 250                  |
| .060.M   | 60                       | 50                       | 4                             | 282                  |
| .075.M   | 75                       | 60                       | 4                             | 340                  |
| .115.M   | 115                      | 95                       | 4                             | 575                  |


#### CONNECTIONS

|   |                         | LINE                       | LINE                          |                |  |  |  |  |  |
|---|-------------------------|----------------------------|-------------------------------|----------------|--|--|--|--|--|
| r | Solid<br>Cable<br>(mm²) | Stranded<br>Cable<br>(mm²) | Terminal Block<br>Torque (Nm) | Torque<br>(Nm) |  |  |  |  |  |
|   | 0.2-10                  | 0.2-6                      | 1.2                           | 1.2            |  |  |  |  |  |
|   | 0.2-10                  | 0.2-6                      | 1.2                           | 1.2            |  |  |  |  |  |
|   | 0.2-10                  | 0.2-6                      | 1.2                           | 1.2            |  |  |  |  |  |
|   | 0.2-10                  | 0.2-6                      | 1.2                           | 1.2            |  |  |  |  |  |
|   | 0.2-10                  | 0.2-6                      | 1.2                           | 1.2            |  |  |  |  |  |
|   | 0.2-10                  | 0.2-6                      | 1.8                           | 1.8            |  |  |  |  |  |
|   | 0.2-10                  | 0.2-6                      | 1.8                           | 1.8            |  |  |  |  |  |
|   | 6-35                    | 4-25                       | 4.5                           | 4.5            |  |  |  |  |  |
|   | 6-35                    | 4-25                       | 4.5                           | 4.5            |  |  |  |  |  |
|   | 10-50                   | 10-50                      | 4                             | 4              |  |  |  |  |  |

#### **TYPICAL MEASUREMENT**



Standard waveform measured when the motor is controlled by VFD drive.

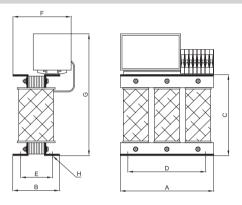


Standard waveform measured when Enerdoor sine wave filter is installed on motor controlled by VFD drive.

| FIN905SF | Rated<br>Current<br>40°C | Rated<br>Current<br>50°C | Min.<br>Switch Freq.<br>(kHz) | Power<br>Loss<br>(W) | Sc<br>Ca<br>(m |
|----------|--------------------------|--------------------------|-------------------------------|----------------------|----------------|
| .180.B   | 180                      | 145                      | 4                             | 695                  | 39             |
| .320.B   | 320                      | 290                      | 4                             | 950                  | N              |
| .410.B   | 410                      | 350                      | 6                             | 1170                 | N              |
| .480.B   | 480                      | 420                      | 6                             | 1390                 | N              |
| .660.B   | 660                      | 580                      | 6                             | 2050                 | N              |
| .750.B   | 750                      | 650                      | 6                             | 2900                 | N              |
| .880.B   | 880                      | 750                      | 6                             | 3450                 | N              |

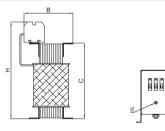
|   |                         | LINE                       |                               |                |  |  |  |  |  |
|---|-------------------------|----------------------------|-------------------------------|----------------|--|--|--|--|--|
| r | Solid<br>Cable<br>(mm²) | Stranded<br>Cable<br>(mm²) | Terminal Block<br>Torque (Nm) | Torque<br>(Nm) |  |  |  |  |  |
|   | 39-95                   | 35-95                      | 20.0                          | 20.0           |  |  |  |  |  |
|   | M8                      | 14                         | M10                           | 18             |  |  |  |  |  |
|   | M8                      | 14                         | M10                           | 18             |  |  |  |  |  |
|   | M12                     | 20                         | M10                           | 18             |  |  |  |  |  |
|   | M12                     | 20                         | M10                           | 18             |  |  |  |  |  |
|   | M12                     | 20                         | M10                           | 18             |  |  |  |  |  |
|   | M12                     | 20                         | M10                           | 18             |  |  |  |  |  |

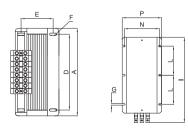





### FIN905SF

#### **MECHANICAL DIMENSIONS mm**


| FIN905SF | A   | В   | C   | D   | E  | F   | G   | H.Ø | Weight<br>Kg. | Case |
|----------|-----|-----|-----|-----|----|-----|-----|-----|---------------|------|
| 005.M    | 180 | 90  | 156 | 150 | 60 | 116 | 235 | 8   | 8             | 1    |
| 008.M    | 180 | 90  | 156 | 150 | 60 | 116 | 235 | 8   | 10            | 1    |
| 010.M    | 180 | 90  | 156 | 150 | 60 | 116 | 235 | 8   | 11            | 1    |
| 016.M    | 240 | 130 | 210 | 210 | 95 | 165 | 290 | 8   | 16            | 1    |
| 025.M    | 240 | 130 | 210 | 210 | 95 | 165 | 290 | 8   | 20            | 1    |
| 036.M    | 240 | 130 | 210 | 210 | 95 | 165 | 290 | 8   | 22            | 2    |
| .048.M   | 240 | 130 | 210 | 210 | 95 | 165 | 290 | 8   | 28            | 2    |


### CASE 1, 2

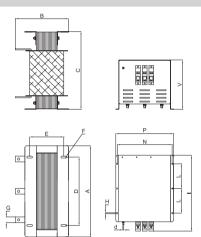


| FIN905SF | A   | В   | C   | D   | E   | F | G | H   | I.  | L   | N   | Р   | V   | d  | Weight<br>Kg. | Case |
|----------|-----|-----|-----|-----|-----|---|---|-----|-----|-----|-----|-----|-----|----|---------------|------|
| .060.M   | 300 | 165 | 260 | 260 | 110 | 8 | 5 | 332 | 260 | 100 | 120 | 135 | 180 | M5 | 34            | 3    |
| .075.M   | 360 | 174 | 305 | 260 | 120 | 8 | 5 | 377 | 293 | 100 | 120 | 135 | 180 | M5 | 47            | 3    |
| .115.M   | 360 | 203 | 310 | 260 | 145 | 8 | 5 | 400 | 389 | 130 | 205 | 220 | 260 | M5 | 72            | 4    |

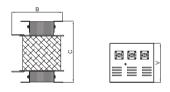
#### CASE 3, 4

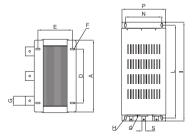







# FIN905SF

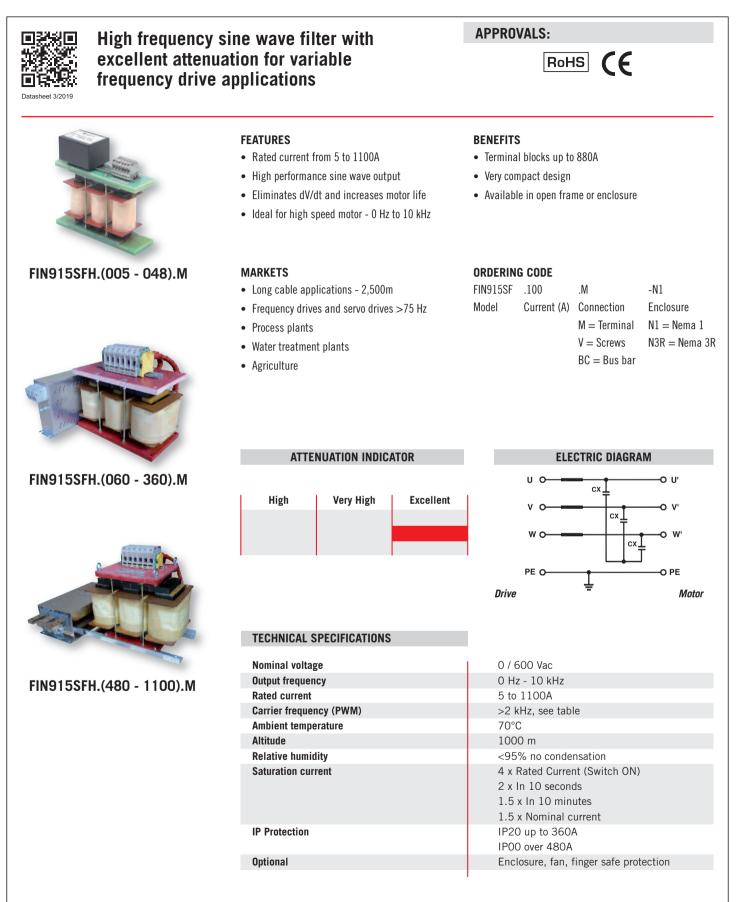

### **MECHANICAL DIMENSIONS mm**


| FIN905SF | A   | В   | C   | D   | E   | F  | G  | H   | - I | L   | N   | Р   | ۷   | d  | S     | Weight<br>Kg. | Case |
|----------|-----|-----|-----|-----|-----|----|----|-----|-----|-----|-----|-----|-----|----|-------|---------------|------|
| .180.B   | 350 | 230 | 310 | 260 | 165 | 8  | 5  | 400 | 389 | 130 | 205 | 220 | 260 | M5 | -     | 86            | 5    |
| .260.B   | 480 | 280 | 410 | 360 | 230 | 8  | 30 | 5   | 400 | 130 | 290 | 305 | 260 | M5 | -     | 132           | 5    |
| .320.B   | 48  | 300 | 410 | 360 | 230 | 8  | 40 | 5   | 400 | 130 | 290 | 305 | 260 | M5 | -     | 163           | 5    |
| .410.B   | 480 | 340 | 410 | 360 | 230 | 10 | 60 | 5   | 400 | 130 | 290 | 305 | 260 | M5 | -     | 188           | 5    |
| .480.B   | 480 | 360 | 410 | 360 | 230 | 10 | 60 | 5   | 660 | 620 | 245 | 292 | 260 | M5 | 25x10 | 208           | 6    |
| .660.B   | 600 | 370 | 510 | 380 | 240 | 10 | 60 | 5   | 660 | 620 | 245 | 292 | 260 | M5 | 25x10 | 309           | 6    |
| .750.B   | 600 | 390 | 510 | 380 | 240 | 10 | 80 | 5   | 830 | 750 | 245 | 292 | 260 | M5 | 25x10 | 356           | 6    |
| .880.B   | 600 | 370 | 570 | 380 | 240 | 10 | 80 | 5   | 830 | 750 | 245 | 292 | 260 | M5 | 25x10 | 351           | 6    |

CASE 5



CASE 6









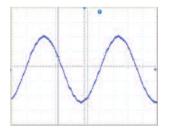

Motor Protection








CONNECTIONS


## **ELECTRICAL CHARACTERISTICS**

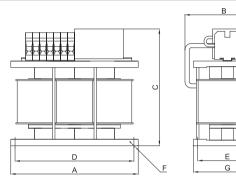
| LEOTRICAL |                          |                              |                      | •••••                                | Loniono                    |                               |                |
|-----------|--------------------------|------------------------------|----------------------|--------------------------------------|----------------------------|-------------------------------|----------------|
|           |                          |                              |                      |                                      | LINE                       |                               | PE             |
| FIN915SFH | Rated<br>Current<br>40°C | Min<br>Switch Freq.<br>(kHz) | Power<br>Loss<br>(W) | Solid<br>Cable<br>(mm <sup>2</sup> ) | Stranded<br>Cable<br>(mm²) | Terminal Block<br>Torque (Nm) | Torque<br>(Nm) |
| .005.M    | 5                        | 2                            | 50                   | 0.2-10                               | 0.2-6                      | 1.2                           | 1.2            |
| .010.M    | 10                       | 2                            | 70                   | 0.2-10                               | 0.2-6                      | 1.2                           | 1.2            |
| .016.M    | 16                       | 2                            | 98                   | 0.2-10                               | 0.2-6                      | 1.2                           | 1.2            |
| .025.M    | 25                       | 2                            | 105                  | 0.2-10                               | 0.2-6                      | 1.2                           | 1.2            |
| .036.M    | 36                       | 2                            | 110                  | 0.2-10                               | 0.2-6                      | 1.8                           | 1.8            |
| .048.M    | 48                       | 2                            | 195                  | 0.2-10                               | 0.2-6                      | 1.8                           | 1.8            |
| .060.M    | 60                       | 2                            | 220                  | 6-35                                 | 4-25                       | 4.5                           | 4.5            |
| .075.M    | 75                       | 2                            | 255                  | 6-35                                 | 4-25                       | 4.5                           | 4              |
| 115.M     | 115                      | 4                            | 420                  | 10-50                                | 10-50                      | 4                             | 4              |
| .180.M    | 180                      | 4                            | 602                  | 39-95                                | 35-95                      | 20                            | 20             |
| .210.M    | 210                      | 4                            | 650                  | 35-150                               | 35-150                     | 20                            | 20             |
| .260.M    | 260                      | 4                            | 701                  | 35-150                               | 35-150                     | 20                            | 20             |
| .360.M    | 360                      | 6                            | 800                  | 35-150                               | 35-150                     | 20                            | 20             |
| .480.M    | 480                      | 6                            | 980                  | 35-150                               | 35-150                     | 20                            | 20             |
| .610.M    | 610                      | 6                            | 1300                 | 35-150                               | 35-150                     | 20                            | 20             |
| .680.M    | 680                      | 6                            | 1400                 | 35-150                               | 35-150                     | 20                            | 20             |
| .770.M    | 770                      | 6                            | 2050                 | 35-150                               | 35-150                     | 20                            | 20             |
| .860.M    | 860                      | 6                            | 2430                 | 35-150                               | 35-150                     | 20                            | 20             |
| .960.M    | 960                      | 6                            | 2765                 | 35-150                               | 35-150                     | 20                            | 20             |
| .1100.M   | 1100                     | 6                            | 2915                 | 35-150                               | 35-150                     | 20                            | 20             |

#### **TYPICAL MEASUREMENT**



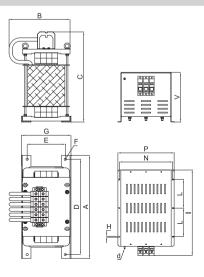
Standard waveform measured when the motor is controlled by VFD drive.




Standard waveform measured when Enerdoor sine wave filter is installed on motor controlled by VFD drive.



## **MECHANICAL DIMENSIONS mm**


| FIN915S | SFH A | В   | C   | D   | E   | F | G   | Weight<br>Kg. | Case |
|---------|-------|-----|-----|-----|-----|---|-----|---------------|------|
| .005.M  | 260   | 170 | 252 | 240 | 110 | 8 | 138 | 5             | 1    |
| .010.M  | 260   | 170 | 252 | 240 | 110 | 8 | 138 | 6.5           | 1    |
| .016.M  | 260   | 170 | 252 | 240 | 110 | 8 | 138 | 8             | 1    |
| .025.M  | 300   | 240 | 265 | 280 | 140 | 8 | 160 | 12            | 2    |
| .036.M  | 300   | 240 | 265 | 280 | 140 | 8 | 160 | 14            | 2    |
| .048.M  | 300   | 240 | 265 | 280 | 140 | 8 | 160 | 17            | 2    |

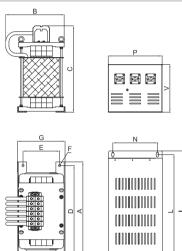
CASE 1, 2



| FIN915SF | H A | В   | C   | D   | E   | F  | G   | I.  | L   | N   | Р   | R | Q, b | V   | Weight<br>Kg. | Case |
|----------|-----|-----|-----|-----|-----|----|-----|-----|-----|-----|-----|---|------|-----|---------------|------|
| .060.M   | 400 | 250 | 335 | 370 | 170 | 12 | 260 | 293 | 100 | 120 | 135 | 5 | 5    | 180 | 30            | 3    |
| .075.M   | 540 | 360 | 460 | 500 | 200 | 12 | 260 | 293 | 100 | 120 | 135 | 5 | 5    | 180 | 38            | 3    |
| .115.M   | 540 | 360 | 460 | 500 | 200 | 12 | 260 | 389 | 130 | 205 | 220 | 5 | 5    | 260 | 63            | 4    |
| .140.M   | 540 | 360 | 460 | 500 | 200 | 12 | 260 | 389 | 130 | 205 | 220 | 5 | 5    | 260 | 80            | 4    |
| .180.M   | 540 | 320 | 465 | 500 | 200 | 12 | 260 | 389 | 130 | 205 | 220 | 5 | 5    | 260 | 83            | 4    |
| .210.M   | 540 | 320 | 465 | 500 | 200 | 12 | 260 | 450 | 150 | 280 | 295 | 5 | 5    | 260 | 88            | 5    |
| .260.M   | 540 | 320 | 465 | 500 | 200 | 12 | 260 | 450 | 150 | 280 | 295 | 5 | 5    | 260 | 110           | 5    |
| .360.M   | 540 | 320 | 465 | 500 | 200 | 12 | 260 | 450 | 150 | 280 | 295 | 5 | 5    | 260 | 150           | 5    |

CASE 3, 4, 5





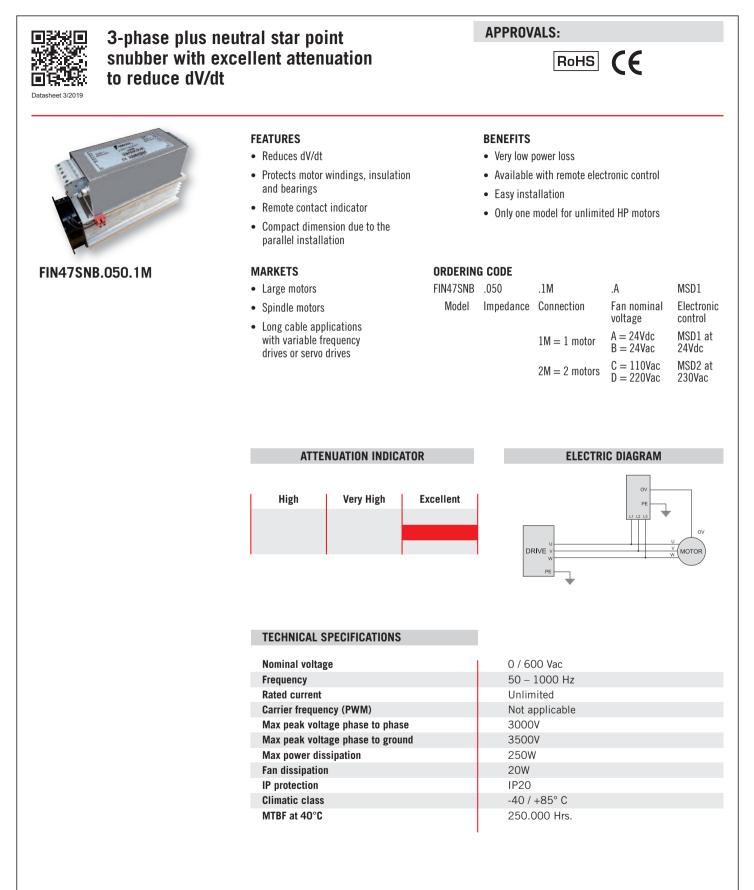



## **MECHANICAL DIMENSIONS mm**

| FIN915SFH | A   | В   | C   | D   | E   | F  | G   | I   | L   | N   | Р   | V   | H  | d  | S     | Weight<br>Kg. | Case |
|-----------|-----|-----|-----|-----|-----|----|-----|-----|-----|-----|-----|-----|----|----|-------|---------------|------|
| .480.M    | 540 | 340 | 475 | 500 | 200 | 12 | 260 | 620 | 660 | 244 | 295 | 262 | 16 | M5 | 25x10 | 115           | 6    |
| .610.M    | 540 | 340 | 475 | 500 | 200 | 12 | 260 | 620 | 660 | 244 | 295 | 262 | 16 | M5 | 25x10 | 120           | 6    |
| .680.M    | 540 | 340 | 475 | 500 | 200 | 12 | 260 | 830 | 790 | 244 | 292 | 292 | 16 | M5 | 25x10 | 126           | 7    |
| .770.M    | 540 | 340 | 475 | 500 | 200 | 12 | 260 | 830 | 790 | 244 | 292 | 292 | 16 | M5 | 25x10 | 130           | 7    |
| .860.M    | 540 | 340 | 475 | 500 | 200 | 12 | 260 | 885 | 830 | 474 | 520 | 292 | 16 | M5 | 40x20 | 135           | 8    |
| .960.M    | 540 | 340 | 475 | 500 | 200 | 12 | 260 | 885 | 830 | 474 | 520 | 292 | 16 | M5 | 40x20 | 150           | 8    |
| .1100.M   | 540 | 340 | 475 | 500 | 200 | 12 | 260 | 885 | 830 | 474 | 520 | 292 | 16 | M5 | 40x20 | 200           | 8    |

## CASE 6, 7, 8




₽∕





# FIN47SNB

Motor Protection







# FIN47SNB

## **ELECTRICAL CHARACTERISTICS**

| FIN47SNB | Nominal<br>Voltage<br>AC (Vac) | Drive<br>Carrier<br>Frequency<br>(kHz) | Power<br>Loss at<br>100Hz<br>(W) | Sol<br>Cat<br>(mr |
|----------|--------------------------------|----------------------------------------|----------------------------------|-------------------|
| .050.1M  | 600                            | <5                                     | 250                              | 10 -              |

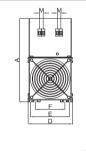
|   | n | B.I | N I | E. |   | TI |   | A I | c |
|---|---|-----|-----|----|---|----|---|-----|---|
| υ | υ | Ν   | N   | E  | υ |    | U | N   | Э |

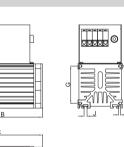
| 1 |                         | LINE                                    |                            | Р         | E              |
|---|-------------------------|-----------------------------------------|----------------------------|-----------|----------------|
|   | Solid<br>Cable<br>(mm²) | Stranded<br>Cable<br>(mm <sup>2</sup> ) | Terminal<br>Torque<br>(Nm) | d<br>(mm) | Torque<br>(Nm) |
|   | 10 - 50                 | 10 - 50                                 | 4.0                        | M10       | 6              |

#### **TYPICAL MEASUREMENT**

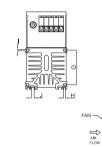


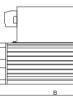
Typical measurement of dV/dt without snubber installed

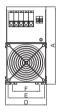

|   | 0 |      |                       |  |
|---|---|------|-----------------------|--|
|   | 1 |      | and the second second |  |
| - |   | <br> |                       |  |
|   |   |      |                       |  |
|   |   |      |                       |  |
|   |   |      |                       |  |
|   |   |      |                       |  |


Typical measurement of dV/dt with snubber installed

## MECHANICAL DIMENSIONS mm

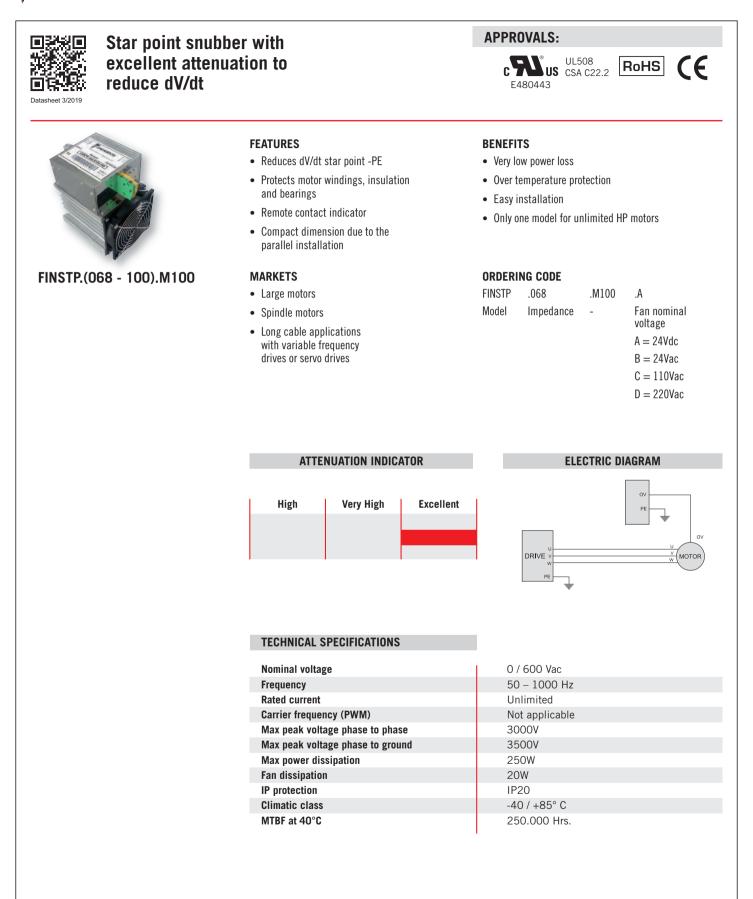

| FIN47SNB    | A   | В   | C     | D   | E   | F  | G   | H   | I. | J    | M  | L  | d   | Weight<br>Kg. | Case |
|-------------|-----|-----|-------|-----|-----|----|-----|-----|----|------|----|----|-----|---------------|------|
| .050.1M.X.Y | 235 | 167 | 246.5 | 125 | 110 | 83 | 125 | 8.5 | 4  | 13.5 | 10 | 15 | M10 | 5             | 1    |
| .050.2M.X.Y | 235 | 368 | 376.5 | 125 | 110 | 83 | 105 | 5.4 | 4  | 8.5  | -  | 15 | M10 | 10            | 2    |


#### CASE 1






AIR FLOW CASE 2







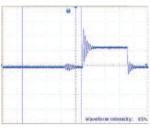



# FINSTP








# FINSTP

CONNECTIONS

## **ELECTRICAL CHARACTERISTICS**

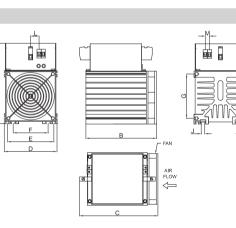
|           | Nominal             | Drive                         | Power                   |                                      | LINE                       |                               | PE             |
|-----------|---------------------|-------------------------------|-------------------------|--------------------------------------|----------------------------|-------------------------------|----------------|
| FINSTP    | Voltage<br>AC (Vac) | Carrier<br>Frequency<br>(kHz) | Loss at<br>100Hz<br>(W) | Solid<br>Cable<br>(mm <sup>2</sup> ) | Stranded<br>Cable<br>(mm²) | Terminal Block<br>Torque (Nm) | Torque<br>(Nm) |
| .068.M100 | 600                 | <5                            | 200                     | 10-50                                | 10-50                      | 4.0                           | 6              |
| .100.M100 | 600                 | <5                            | 200                     | 10-50                                | 10-50                      | 4.0                           | 6              |

#### **TYPICAL MEASUREMENT**



Typical measurement of dV/dt without snubber installed

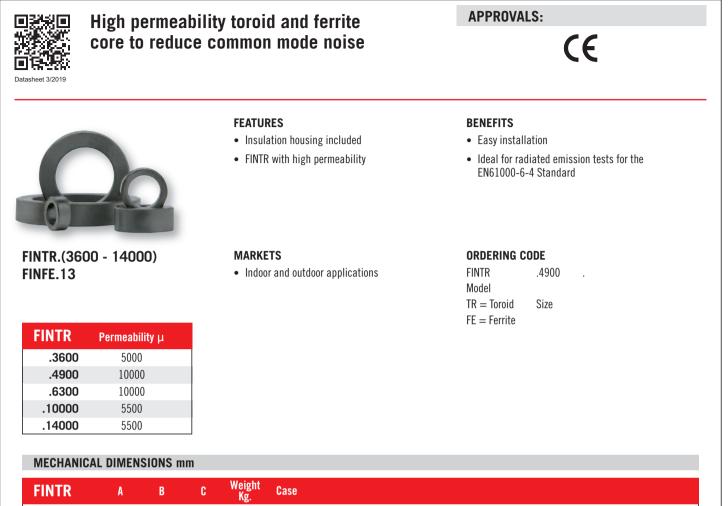
|       |        | -     |      |  |
|-------|--------|-------|------|--|
|       |        |       |      |  |
|       |        |       |      |  |
|       |        | -     |      |  |
|       | Am     | <br>- | <br> |  |
|       | 1      | +     |      |  |
| maile | and in |       |      |  |
|       |        | -     |      |  |
|       |        |       |      |  |
|       |        | 1     |      |  |
|       |        | -     |      |  |
|       |        | E     |      |  |
|       |        | E     |      |  |
|       |        | 1     |      |  |


Typical measurement of dV/dt with snubber installed

### **MECHANICAL DIMENSIONS mm**

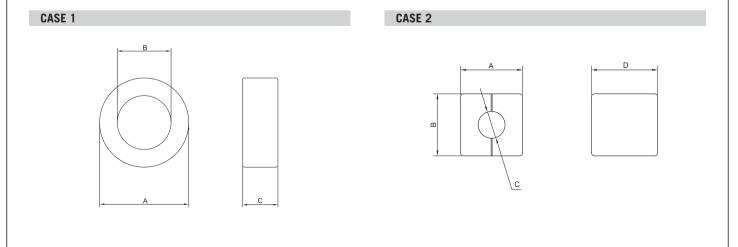
| FINSTP    | A   | В   | C     | D   | E   | F  | G   | H   | I. | J   | М  | L  | Weight<br>Kg. | Case |  |
|-----------|-----|-----|-------|-----|-----|----|-----|-----|----|-----|----|----|---------------|------|--|
| .068.M100 | 190 | 167 | 185.5 | 125 | 110 | 83 | 105 | 5.4 | 4  | 8.5 | 10 | 20 | 4             | 1    |  |
| .100.M100 | 190 | 167 | 185.5 | 125 | 110 | 83 | 105 | 5.4 | 4  | 8.5 | 10 | 20 | 4             | 1    |  |

н


CASE 1






# **FINTR / FINFE**

Toroids / Ferrites



|        |     |     |    | ng.  |   |
|--------|-----|-----|----|------|---|
| .3600  | 37  | 22  | 16 | 0.04 | 1 |
| .4900  | 49  | 34  | 16 | 0.08 | 1 |
| .6300  | 63  | 38  | 25 | 0.25 | 1 |
| .10000 | 102 | 66  | 15 | 0.36 | 1 |
| .14000 | 140 | 106 | 25 | 0.80 | 1 |

| FINFE | A  | В  | C  | D  | Weight<br>Kg. | Case |
|-------|----|----|----|----|---------------|------|
| .13   | 31 | 32 | 13 | 33 | 0.1           | 2    |





# Accessories

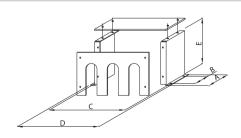


Enerdoor accessories include the FINPRT and FINENCL series.

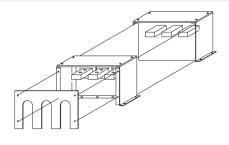
FINPRT offers finger safe protection for EMI/RFI filters with bus bar connections and features easy installation.

Enerdoor FINENCL series features enclosures in IP21 (Nema 1) and IP44 (Nema 3R) for indoor and outdoor installations. These accessories are typically used for any type of line reactors, output filters and sine wave filters. Features include easy installation and an optional fan.



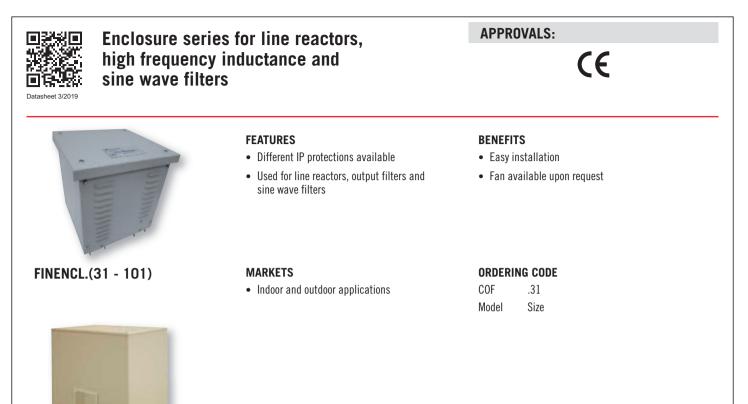



| h h                        | Protection covers<br>high currents and<br>connections                                                                                                  |                                                                                                                                                                   | APPROVALS:                                                                                                                                             |                                                                                                                                           |  |  |  |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                            |                                                                                                                                                        | <ul><li>FEATURES</li><li>Rated current from 150 to 1750A</li></ul>                                                                                                | <ul><li>BENEFITS</li><li>Easy installatio</li><li>Increases IP pro</li></ul>                                                                           |                                                                                                                                           |  |  |  |
| INPRT.(250                 | 0 - 1000).P                                                                                                                                            | MARKETS <ul> <li>Enerdoor filter with bus bar connection</li> </ul>                                                                                               | <b>ORDERING CODE</b><br>FINPRT .250<br>Model Size                                                                                                      | E<br>.P<br>Connection<br>P = Protection                                                                                                   |  |  |  |
| FINPRT                     |                                                                                                                                                        | FIN1500 / FIN1500HV                                                                                                                                               | FIN538S1                                                                                                                                               | FIN539S                                                                                                                                   |  |  |  |
| FINENT                     | FIN1200 / FIN1200HV                                                                                                                                    |                                                                                                                                                                   | 11100001                                                                                                                                               | FINJ555                                                                                                                                   |  |  |  |
| .250.P                     | .150.V                                                                                                                                                 | .150.V                                                                                                                                                            | .150.V                                                                                                                                                 | -                                                                                                                                         |  |  |  |
|                            |                                                                                                                                                        |                                                                                                                                                                   |                                                                                                                                                        |                                                                                                                                           |  |  |  |
|                            | .150.V                                                                                                                                                 | .150.V                                                                                                                                                            | .150.V                                                                                                                                                 | -                                                                                                                                         |  |  |  |
|                            | .150.V<br>.200.V                                                                                                                                       | .150.V<br>.200.V                                                                                                                                                  | .150.V<br>.200.V                                                                                                                                       | -<br>.200.V                                                                                                                               |  |  |  |
|                            | .150.V<br>.200.V<br>.280.V                                                                                                                             | .150.V<br>.200.V<br>.280.V                                                                                                                                        | .150.V<br>.200.V<br>.280.V                                                                                                                             | -<br>.200.V<br>.280.V                                                                                                                     |  |  |  |
|                            | .150.V<br>.200.V<br>.280.V<br>.280.BC<br>.320.BC<br>.360.BC                                                                                            | .150.V<br>.200.V<br>.280.V<br>.280.BC<br>.320.BC<br>.360.BC                                                                                                       | .150.V<br>.200.V<br>.280.V<br>.280.BC<br>.320.BC<br>.360.BC                                                                                            | -<br>.200.V<br>.280.V<br>.280.BC<br>.320.BC<br>.400.B                                                                                     |  |  |  |
| .250.P                     | .150.V<br>.200.V<br>.280.V<br>.280.BC<br>.320.BC<br>.360.BC<br>.400.BC                                                                                 | .150.V<br>.200.V<br>.280.V<br>.280.BC<br>.320.BC<br>.360.BC<br>.400.BC                                                                                            | .150.V<br>.200.V<br>.280.V<br>.280.BC<br>.320.BC<br>.360.BC<br>.400.BC                                                                                 | -<br>.200.V<br>.280.V<br>.280.BC<br>.320.BC<br>.400.B<br>.500.B                                                                           |  |  |  |
| .250.P                     | .150.V<br>.200.V<br>.280.V<br>.280.BC<br>.320.BC<br>.360.BC<br>.400.BC<br>.500.BC                                                                      | .150.V<br>.200.V<br>.280.V<br>.280.BC<br>.320.BC<br>.360.BC<br>.400.BC<br>.500.BC                                                                                 | .150.V<br>.200.V<br>.280.V<br>.280.BC<br>.320.BC<br>.360.BC<br>.400.BC<br>.500.BC                                                                      | -<br>.200.V<br>.280.V<br>.280.BC<br>.320.BC<br>.400.B<br>.500.B<br>.600.B                                                                 |  |  |  |
| .250.P                     | .150.V<br>.200.V<br>.280.V<br>.280.BC<br>.320.BC<br>.360.BC<br>.400.BC<br>.500.BC<br>.600.BC                                                           | .150.V<br>.200.V<br>.280.V<br>.280.BC<br>.320.BC<br>.360.BC<br>.400.BC<br>.500.BC<br>.600.BC                                                                      | .150.V<br>.200.V<br>.280.V<br>.280.BC<br>.320.BC<br>.360.BC<br>.400.BC<br>.500.BC<br>.600.BC                                                           | -<br>.200.V<br>.280.V<br>.280.BC<br>.320.BC<br>.400.B<br>.500.B<br>.600.B<br>.750.B                                                       |  |  |  |
| .250.P<br>.360.P           | .150.V<br>.200.V<br>.280.V<br>.280.BC<br>.320.BC<br>.360.BC<br>.400.BC<br>.500.BC<br>.600.BC<br>.750.BC                                                | .150.V<br>.200.V<br>.280.V<br>.280.BC<br>.320.BC<br>.360.BC<br>.400.BC<br>.500.BC<br>.600.BC<br>.750.BC                                                           | .150.V<br>.200.V<br>.280.V<br>.280.BC<br>.320.BC<br>.360.BC<br>.400.BC<br>.500.BC<br>.600.BC<br>.750.BC                                                | -<br>.200.V<br>.280.V<br>.280.BC<br>.320.BC<br>.400.B<br>.500.B<br>.600.B<br>.750.B<br>.900.B                                             |  |  |  |
| .250.P                     | .150.V<br>.200.V<br>.280.V<br>.280.BC<br>.320.BC<br>.360.BC<br>.400.BC<br>.500.BC<br>.600.BC<br>.750.BC<br>.900.BC                                     | .150.V<br>.200.V<br>.280.V<br>.280.BC<br>.320.BC<br>.360.BC<br>.400.BC<br>.500.BC<br>.600.BC<br>.750.BC<br>.900.BC                                                | .150.V<br>.200.V<br>.280.V<br>.280.BC<br>.320.BC<br>.360.BC<br>.400.BC<br>.500.BC<br>.600.BC<br>.750.BC<br>.900.BC                                     | -<br>.200.V<br>.280.V<br>.280.BC<br>.320.BC<br>.400.B<br>.500.B<br>.600.B<br>.750.B<br>.900.B<br>.1000.B                                  |  |  |  |
| .250.P<br>.360.P           | .150.V<br>.200.V<br>.280.V<br>.280.BC<br>.320.BC<br>.360.BC<br>.400.BC<br>.500.BC<br>.600.BC<br>.750.BC<br>.900.BC<br>.1000.BC                         | .150.V<br>.200.V<br>.280.V<br>.280.BC<br>.320.BC<br>.320.BC<br>.360.BC<br>.500.BC<br>.500.BC<br>.600.BC<br>.750.BC<br>.900.BC<br>.1000.BC                         | .150.V<br>.200.V<br>.280.V<br>.280.BC<br>.320.BC<br>.360.BC<br>.500.BC<br>.600.BC<br>.750.BC<br>.900.BC<br>.1000.BC                                    | -<br>.200.V<br>.280.V<br>.280.BC<br>.320.BC<br>.400.B<br>.500.B<br>.600.B<br>.750.B<br>.900.B<br>.1000.B<br>.1250.B                       |  |  |  |
| .250.P<br>.360.P<br>.750.P | .150.V<br>.200.V<br>.280.V<br>.280.BC<br>.320.BC<br>.360.BC<br>.400.BC<br>.500.BC<br>.600.BC<br>.750.BC<br>.900.BC<br>.1000.BC<br>.1250.BC             | .150.V<br>.200.V<br>.280.V<br>.280.BC<br>.320.BC<br>.320.BC<br>.360.BC<br>.400.BC<br>.500.BC<br>.600.BC<br>.750.BC<br>.900.BC<br>.1000.BC<br>.1250.BC             | .150.V<br>.200.V<br>.280.V<br>.280.BC<br>.320.BC<br>.360.BC<br>.400.BC<br>.500.BC<br>.600.BC<br>.750.BC<br>.900.BC<br>.1000.BC<br>.1250.BC             | -<br>.200.V<br>.280.V<br>.280.BC<br>.320.BC<br>.400.B<br>.500.B<br>.500.B<br>.750.B<br>.900.B<br>.1000.B<br>.1250.B<br>.1500.B            |  |  |  |
| .250.P<br>.360.P           | .150.V<br>.200.V<br>.280.V<br>.280.BC<br>.320.BC<br>.360.BC<br>.400.BC<br>.500.BC<br>.500.BC<br>.750.BC<br>.900.BC<br>.1000.BC<br>.1250.BC<br>.1500.BC | .150.V<br>.200.V<br>.280.V<br>.280.BC<br>.320.BC<br>.320.BC<br>.360.BC<br>.400.BC<br>.500.BC<br>.600.BC<br>.750.BC<br>.900.BC<br>.1000.BC<br>.1250.BC<br>.1500.BC | .150.V<br>.200.V<br>.280.V<br>.280.BC<br>.320.BC<br>.360.BC<br>.400.BC<br>.500.BC<br>.500.BC<br>.750.BC<br>.900.BC<br>.1000.BC<br>.1250.BC<br>.1500.BC | -<br>.200.V<br>.280.V<br>.280.BC<br>.320.BC<br>.400.B<br>.500.B<br>.600.B<br>.750.B<br>.900.B<br>.1000.B<br>.1250.B<br>.1500.B<br>.1750.B |  |  |  |
| .250.P<br>.360.P<br>.750.P | .150.V<br>.200.V<br>.280.V<br>.280.BC<br>.320.BC<br>.360.BC<br>.400.BC<br>.500.BC<br>.600.BC<br>.750.BC<br>.900.BC<br>.1000.BC<br>.1250.BC             | .150.V<br>.200.V<br>.280.V<br>.280.BC<br>.320.BC<br>.320.BC<br>.360.BC<br>.400.BC<br>.500.BC<br>.600.BC<br>.750.BC<br>.900.BC<br>.1000.BC<br>.1250.BC             | .150.V<br>.200.V<br>.280.V<br>.280.BC<br>.320.BC<br>.360.BC<br>.400.BC<br>.500.BC<br>.600.BC<br>.750.BC<br>.900.BC<br>.1000.BC<br>.1250.BC             | -<br>.200.V<br>.280.V<br>.280.BC<br>.320.BC<br>.400.B<br>.500.B<br>.500.B<br>.750.B<br>.900.B<br>.1000.B<br>.1250.B<br>.1500.B            |  |  |  |


#### **MECHANICAL DIMENSIONS mm**

| FINPRT  | A   | В   | C   | D   | E   | Case |
|---------|-----|-----|-----|-----|-----|------|
| .250.P  | 135 | 115 | 250 | 270 | 110 | 1    |
| .360.P  | 135 | 115 | 260 | 280 | 150 | 1    |
| .750.P  | 165 | 145 | 280 | 300 | 180 | 1    |
| .1000.P | 165 | 145 | 380 | 400 | 200 | 1    |

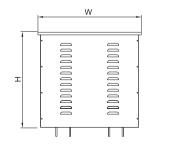
#### CASE 1

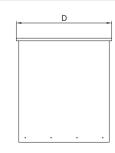



ASSEMBLY



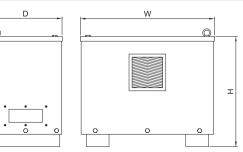





## FINECL.(A - D)

| FINENCL | IP Protection (Nema) | W    | D    | H    | Weight Kg. | Case |  |
|---------|----------------------|------|------|------|------------|------|--|
| .31     | IP21 (Nema 1)        | 340  | 340  | 330  | 7          | 1    |  |
| .41     | IP21 (Nema 1)        | 340  | 340  | 380  | 9          | 1    |  |
| .51     | IP21 (Nema 1)        | 390  | 390  | 430  | 12         | 1    |  |
| .61     | IP21 (Nema 1)        | 490  | 370  | 480  | 16         | 1    |  |
| .71     | IP21 (Nema 1)        | 540  | 440  | 590  | 22         | 1    |  |
| .81     | IP21 (Nema 1)        | 640  | 490  | 695  | 30         | 1    |  |
| .101    | IP21 (Nema 1)        | 800  | 800  | 800  | 43         | 1    |  |
| .Α      | IP44 (Nema 3R)       | 450  | 360  | 620  | 23         | 2    |  |
| .В      | IP44 (Nema 3R)       | 610  | 460  | 720  | 35         | 2    |  |
| .C      | IP44 (Nema 3R)       | 810  | 560  | 920  | 56         | 2    |  |
| .D      | IP44 (Nema 3R)       | 1306 | 1000 | 1426 | 95         | 2    |  |


#### CASE 1







C







# **APPLICATION CRITERIA**

## **EMI/RFI Filters: Overview**

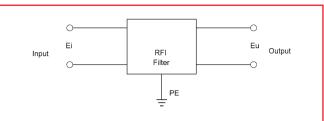
EMI/RFI filters reduce electromagnetic conducted and radiated interference. For a typical representation of an EMI/RFI filter, please see **Figure 4**.

These filters are bi-directional devices and reduce undesirable signals measured on output terminals in comparison with those that appear on input terminals or vice versa. Due to bi-directional characteristics, EMI/RFI filters are able to reduce levels of emitted disturbances and also increase the immunity level of filtered equipment or systems.

#### 1.1 Active and passive filters

- a) Active filters are devices in which mainly active components are used, such as transistors
- b) Passive filters are devices in which only passive components as resistances, inductances and capacitors are used

#### 1.2 Single phase and three phase filters


- a) Single phase filters are suitable for application on single phase equipment or electric installations (See Figure 5)
- b) Three phase filters are suitable for application on three phase equipment or electric installations (See Figure 6)

#### 1.3 Single and double function filters

- a) Single function filters are RFI devices able to efficiently attenuate common mode interference. The electrical diagram of the Enerdoor single function filter type FIN538 is shown in **Figure 7**. This type of filter typically allows a maximum attenuation level of common mode interference of 70-80 dB.
- b) Double function filters efficiently attenuate both common mode and differential mode interference. The electrical diagram of the Enerdoor double function filter type FIN1500 is shown in **Figure 8**. This type of filter allows a maximum attenuation level of interference higher than 80 dB.

The following single phase filters are double function filters: FIN33, FIN35, FIN40 and FIN50.

The following three phase filters are double function filters: FIN538S, FIN538S1, FIN1200, FIN1500, FIN1600, FIN1700, FIN1900, FIN1740, and FIN1940.



Eu < Ei = Attenuation Fig. 4: Typical representation of an EMI/RFI filter

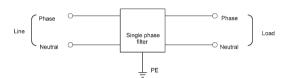
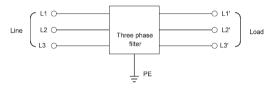




Fig. 5: Schematic diagram of a single phase filter





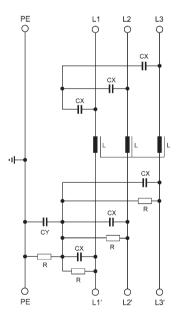



Fig. 7: Electrical diagram of Enerdoor single stage filter type FIN538

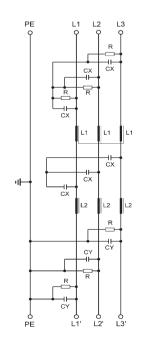
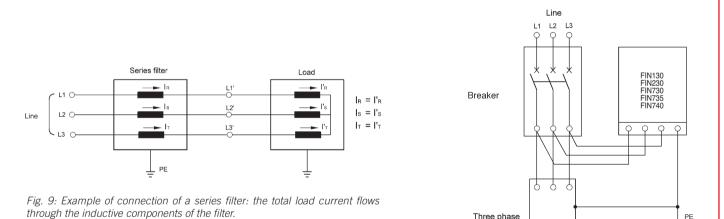



Fig. 8: Electrical diagram of Enerdoor double stage filter type FIN1500





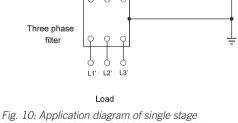
## 1.4 Series and parallel filters


a) Series filters represent the most widespread RFI filters and are typically connected in series between the energized electric point and the load. The total load current flows through the inductive components of a series filter and therefore must be suitable to support the load (See Figure 9). Capacitive and resistive components of this filter are connected in parallel and absorb a very low current from the main.

The following RFI filters are three phase filters: FIN538, FIN538S, FIN538S1, FIN539S, FIN1200, FIN1500, FIN1600, FIN1700, FIN1900, FIN3755, FIN1240, FIN1740, FIN1740ESM, and FIN1940.

The following RFI filters are single phase filters: FIN21, FIN26, FIN27, FIN33, FIN35, FIN40, FIN50, FIN60, FIN70 and FIN80.

b) Parallel filters are connected in parallel to the main; therefore their inductive, resistive and capacitive components absorb only a small current independent of the level of load current. The typical application of single function FIN130SP, FIN230SP, FIN730, FIN735, and FIN740 parallel filters are shown in Figure 10.


These parallel filters have been developed by Enerdoor to increase the attenuation level for lower frequency interference. In particular those included in the range between a few kHz and a few MHz, and protect electronic control devices of industrial automatic machines from short duration high voltage surges.



through the inductive components of the filter.

Note: An example of a simple series filter is represented by a common mode choke (for example an Enerdoor choke series FIN900) to be connected between the inverter and the load.

The above choke application allows an important reduction of radiated interference and a lower attenuation of the conducted interference present on the mains.



Enerdoor FIN730 and FIN230SP parallel filters



## 2. Normative References

#### 2.1 European EMC Framework | Directive 2014/30/EU

In accordance with the European Framework 2014/30/EU relevant to Electromagnetic Compatibility (EMC), each device, machine or installation containing electric components which emit interference or disturbed by them shall:

- a) Not generate electromagnetic disturbance levels higher than that established by the above Directive, in order to allow the correct operation of all equipment installed in the surrounding environment.
- b) Comply with the Standard level of immunity, in order to avoid electromagnetic disturbance influencing behavior in service.

#### 2.2 Normative references for emission and immunity tests

In order to certify that a device, machine or installation complies with the European Directive EMC 2014/30/EU, it is necessary to carry out a complete series of electromagnetic compatibility tests.

### A) EMISSION TEST

| STANDARD<br>REFERENCE | TYPE OF EMC TEST                 |
|-----------------------|----------------------------------|
| EN 55014              | Conducted emissions              |
| EN 55014              | Radiated power                   |
| EN 55014              | Intermitted interference (click) |
| EN 55011              | Conducted emissions              |
| EN 55011              | Radiated emissions               |
| EN 55022              | Conducted emissions              |
| EN 55022              | Radiated emissions               |

#### **B) IMMUNITY TEST**

| STANDARD<br>REFERENCE | TYPE OF EMC TEST                           |
|-----------------------|--------------------------------------------|
| EN 61000-4-2          | Electrostatic discharge immunity           |
| EN 61000-4-3          | RF radiated immunity                       |
| EN 61000-4-4          | Immunity to fast transients (burst)        |
| EN 61000-4-5          | Immunity to high energy transients (surge) |
| EN 61000-4-6          | Conducted immunity                         |
| EN 61000-4-8          | Power frequency magnetic field immunity    |
| EN 61000-4-11         | Immunity to voltage dips and variations    |





# 3. Classification of industrial environments in accordance with the EMC level

#### 3.1 General

Electromagnetic interference may originate inside or outside a device, machine or installation.

The interference of internal origin mainly causes electromagnetic emission problems, while those of external origin can cause immunity problems. EMI/RFI filters must be capable of adequately reducing both internal and external disturbances in order to solve the entire electromagnetic compatibility problem on the device, machine or installation.

### 3.2 EMC environment classifications

In order to determine the most adequate EMI/RFI filter relevant to a specific application, environments are classified in accordance with the EMC interference levels and are as follow:

- Normal (low EMC interference levels)
- Severe (medium EMC interference levels)
- Very severe (high EMC interference levels)

Emission and immunity tests (See Clause 2.2) verify that a device, machine or installation is adequate for a specific EMC environment.

# 4. Enerdoor EMI/RFI filters in accordance with EMC environments

#### 4.1 Residential, commercial and light industrial environment

Enerdoor filters used for:

- Single phase circuits: FIN21, FIN26, FIN27, FIN 40, FIN50
- Three phase circuits: FIN538, FIN538S, FIN538S1, FIN1200, FIN1700, FIN1700E, FIN1700G, FIN1700EG, FIN3755 double function filters

# 4.2 Industrial environments (Severe environment)

Enerdoor filters used for:

- Single phase circuits: FIN27, FIN 35, FIN40, FIN50
- Three phase circuits: FIN538, FIN538S, FIN538S1, FIN1200 (HV\*), FIN1500 (HV\*), FIN1600, FIN1700, FIN1700E, FIN1700EG, FIN1900, FIN1900E, FIN1900G, FIN1900EG, FIN1900S, FIN3755, FIN1240, FIN1740, FIN1740ESM, FIN1940 double function filters

## 4.3 Industrial environment (Very severe environment)

Enerdoor filters used for:

- Single phase circuits: FIN27, FIN35, FIN40, FIN50
- Three phase circuits: FIN538, FIN538S, FIN538S1, FIN539S, FIN1200 (o HV\*), FIN1500 (o HV\*), FIN1600, FIN1700, FIN1700E, FIN1700EG, FIN1900, FIN1900E, FIN1900G, FIN1900EG, FIN1900S, FIN3755, FIN1240, FIN1740, FIN1740ESM, FIN1940 double function filters; FIN130SP, FIN230SP, FIN730, FIN735, FIN740

#### 4.4 Filters for a specific application

The information referenced above is a general suggestion relevant to the application of Enerdoor filters. A more precise match between a device, machine or installation and an RFI filter may be determined only after having carried out the complete series of emission and immunity EMC tests.

(\*) The FIN1200HV and FIN1500HV filters offer the same attenuation characteristics as the FIN1200 and FIN1500 but have nominal voltage of 600V – 50 Hz instead of 480V – 50 Hz.





# 5. Application example for Enerdoor filters and chokes

In the schematic diagram Figure 11 the choice of the best filter(s) for the specific application may vary using the below criteria.

#### 5.1 Filter parameters

a) The power reference of the filter:

 $\mathbf{P} = \sqrt{3} \ \mathbf{V} \bullet \mathbf{I} \cos \varphi$ 

| Р     | Is the total power of device and motor of the considered system                          |
|-------|------------------------------------------------------------------------------------------|
| V     | Is the phase to phase nominal voltage<br>of the installation<br>(for example 400V-50 Hz) |
| COS O | Is the average power factor                                                              |

b) The nominal current (I) of the filter derives from the previous formula, as follows:

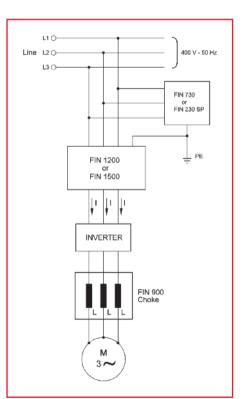





Fig. 11: Typical electric diagram relevant to the application of Enerdoor filters and chokes

Note: The low voltage breaker is not represented

#### 5.2 Calculation example (See Figure 11)

What is the best Enerdoor filter for an installation with total power P of 85 kW and phase to phase voltage of 400 Volts?

a) It is assumed the power factor  $\cos \varphi$  value is 0.7 Knowing the power **P**, the voltage **V**, and the  $\cos \varphi$ , the current value is calculated as follows:

I = 
$$\frac{P}{\sqrt{3} \cdot V \cdot \cos \varphi} = \frac{85,000}{\sqrt{3} \cdot 400 \cdot 0.7} \simeq 175 \text{ A}$$

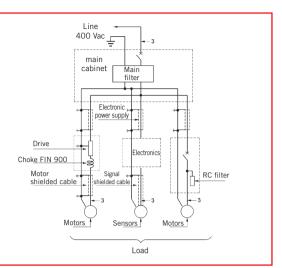
Therefore the best Enerdoor filter for this specific application is one with the nominal current of 200A.

In accordance with the EMC environment (typically severe or very severe), a two stage series filter in combination with a single stage parallel filter is recommended.

- b) The choke installed between the inverter and the motor shall have a nominal current higher than that calculated for the filter. This is due to the following effects:
- The working frequency PWM of the inverter is between 5 and 20 kHz. This causes an augmentation of choke loss and consequently increases temperature.
- During the motor acceleration and deceleration the output current of the inverter may be double its nominal value for up to one minute..

Practical experience suggests using a choke about 50% larger compared to the corresponding RFI filters nominal current. Therefore, for this application an Enerdoor choke with nominal current equal to 280A is recommended.






# Example of a filter application on a system with one master cabinet and several auxiliary cabinets

In this case a single mains filter is installed on the master cabinet only.

Note: Power cables leaving a filtered cabinet are always screened with the screen earthed at both ends.

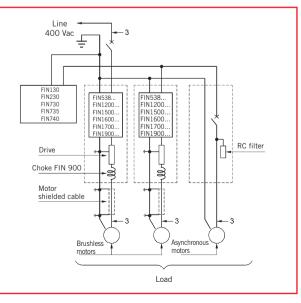
Shielded signal cables, however, have screens earthed at the electronic board end only.



#### l ine Cabinet 400 Vac 3 FIN130 FIN230 FIN730 FIN538 FIN1200 FIN1500 FIN1600 FIN735 FIN740 FIN1700. FIN1900. PE cable Brushless servo drives Choke FIN 900 Motor shielded cable Motors Load

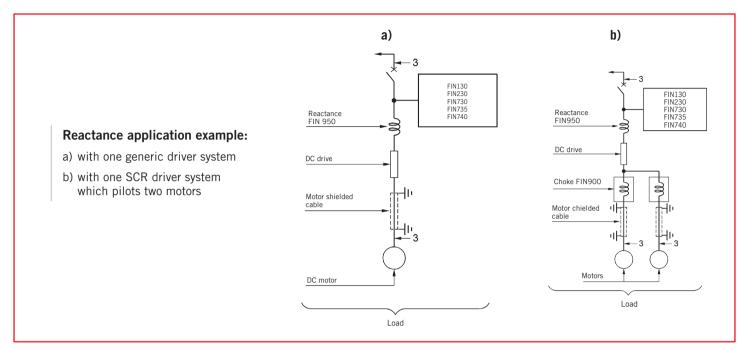
#### Example of filter application with brushless drives

Note: Presence of the mains filter in series with the power supply at the panel input; cell in parallel with the filter on the mains side; chokes on the drive output; screened motor cable with the cable screen connected to earth at both ends (if possible with the earth conductor external to the screen).


# Example of filter application in a plant using more cabinet

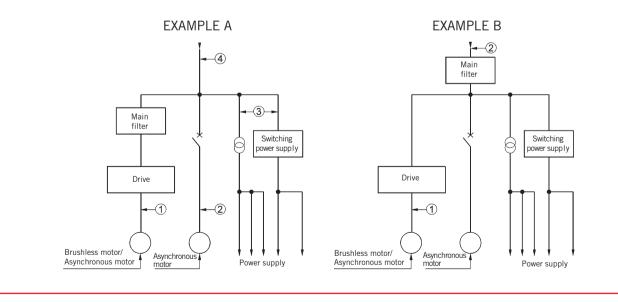
A single cell covers the entire plant.

Each cabinet is equipped with its own filter.


The filter may be omitted on panels which do not contain components generating high disturbance levels (such as asyncronous motors).

Note: The RC filter on the asynchronous motor remote control breaker is necessary to eliminate the disturbance on the motor cable generated by contact opening.





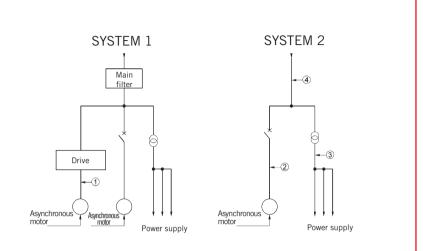





#### Figure 1

In **Example A** the application of the filter feeding only the driver/inverter is technically correct. However, there exists a risk that inside the cableform cable 1 may run parallel to and nearby cable 2 and 3. In this case, cable 1 becomes coupled to cable 2 and 3, inducing in the latter disturbances which are transmitted to the mains network and reduces the effectiveness of the filter. It is therefore better to use the solution shown in **Example B**. The only precaution needed is to avoid the close proximity and parallel run of cables 1 and 2, which would induce in the latter the phenomenon previously explained.

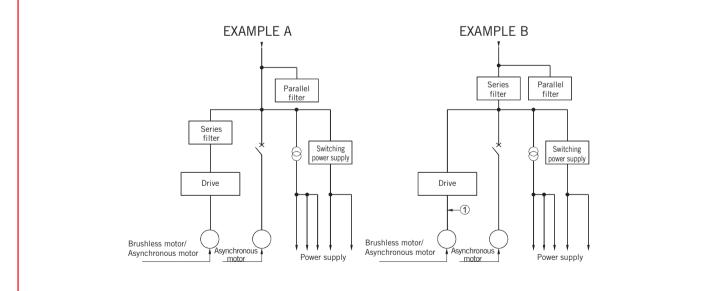







#### Figure 2

In this example the application of the filter is correct. **System 2** which does not incorporate disturbing components is not filtered. However, for the reason stated in connection with **Figure 1**, it is necessary to avoid that outside the system cable 1 runs parallel and close to cables 2, 3 and 4.


The coupling would induce disturbance in the latter which, transmitted to the mains network, would reduce the filters effectiveness.



#### Figure 3

In **Example A** the EMI/RFI Filter series is installed only in a portion of the machine, the parallel filter must be connected immediately after the main breaker of the panel and as close as possible to the main grounding collector. In **Example B** the parallel filter is connected in parallel to the input of the mains filter.

In both cases the wires connecting the parallel filter must be as short as possible





The present General Application Instructions are intended as a general guide for the correct use of interference suppressing filters and chokes under safe conditions.

liters must be installed, protected and used correctly in order to avoid dangers.

Filters must be employed satisfying the conditions of use for which they were designed and guaranteed. Filters must not be exposed to chemical substance damage, unless specifically designed to withstand such substances. Examples of damaging substances are as follow but not limited to: solvents, oils, grease, base or acid solutions, and chemical products.

Filters must be adequately protected against the risk of mechanical damage both during installation and under normal working conditions.

Filters must not be installed in places subject to rainfall or in contact with water, unless expressly declared to be suitable for withstanding such conditions. Particular attention should be paid to not exposing filters to polluted atmospheres or harmful substances.

Filters are designed for use in closed spaces, usually inside electrical cubicles. They may be used outside stated enclosures but only when the necessary protection is supplied.

#### **GENERAL INSTALLATION REQUIREMENTS**

In the absence of specific installation instructions, the following rules are to be applied:

Connections must scrupulously follow the technical information and must be carried out using suitable tools / fixtures.

Metallic containers must be suitably grounded.

Filters must not be installed in contact with, or close to, hot surfaces. If employed in such conditions they must be suitably prepared, allowing a 10% degrading for each 20°C, up to a maximum of 30% at 100°C. The Enerdoor Service Center must be contacted if such a non-standard application is used. Filters must be adequately supported and must not be damaged by mechanical supporting devices.

The contact terminals of filters must have suitable clamps at the cable-to-filter contact terminals in order to ensure terminals will not become disconnected as a result of vibrations. Clamping must be precise and periodically inspected.

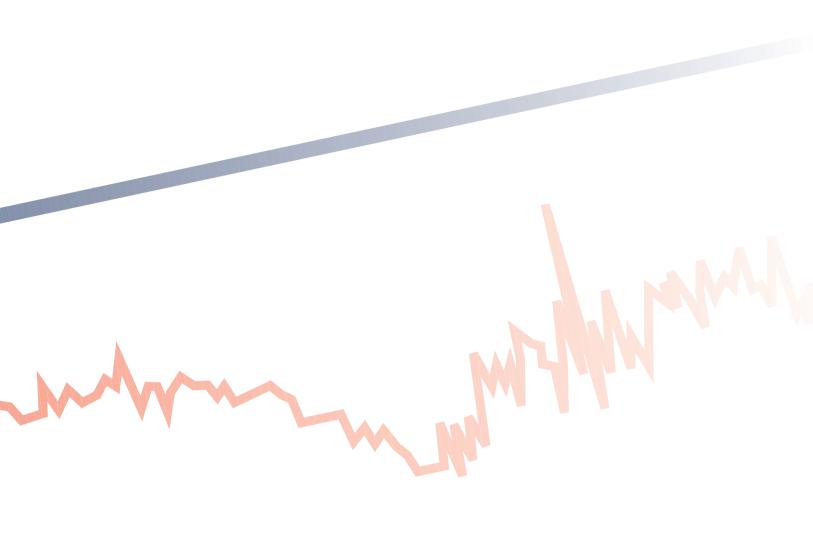
When filters are installed on mobile structures they must be placed in protective housing which guarantee the mechanical and electrical protection of the filter connecting terminals.

If filters and coils are connected using screened cables, the length of the unscreened portion of the cable must be kept to the minimum.

Filters and coils must not be subjected to the following mechanical stresses: pulling, twisting, compression, squashing and scraping.

#### GENERAL USE REQUIREMENTS

As for the limiting conditions of a filters use: the nominal voltage, current capacity, working temperature and thermal effect references must be made to defined technical specifications. Current and voltage specifications assume an ambient temperature of 40°C. Characteristics quoted in product specifications must always be consulted and it is recommended that stated specifications be scrupulously respected particularly concerning specified parameters.


#### PERIODIC CHECKS BY THE PURCHASERS

Filters must be periodically examined. Examination is required whenever there is a fear there might be damage by electrical stress (overvoltage, overload) or mechanical stress (squashing, twisting, scraping, etc.). If a filter shows visible changes in appearance or signs of damage or wear, it must be repaired by skilled and qualified personnel using suitable facilities, or it must be replaced. Filters mounted on mobile or portable structures should be examined after each spell of duty. A period of 2 years between routine inspections is suggested.

#### STORAGE CONDITIONS

All filters, not specifically designed for external use, must be stocked in closed dry storage space.

#### SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE.





SWITZERLAND ENERDOOR SA Phone +41 (0) 91 9228060 info@enerdoor.ch www.enerdoor.ch

USA ENERDOOR Inc Toll Free 1-877-778-2875 Phone 1-207-210-6511 info@enerdoor.com www.enerdoor.com

GERMANY ENERDOOR Gmbh Phone +49 (0) 6642 223692 info@enerdoor.de www.enerdoor.de

ITALY FINMOTOR SrI Phone +39 02 4891 0020 info@finmotor.com www.finmotor.com

FINLAB Phone + 39 4890462 info@finlab.it www.finlab.it

HUNGARY EICHHOFF ELEKTRO Kft Phone +36 27 511180 info@eichhoff-elektro.com www.eichhoff-kft.com